【題目】“大湖名城,創(chuàng)新高地”的合肥,歷史文化積淀深厚,民俗和人文景觀豐富,科教資源眾多,自然風光秀美,成為中小學生“研學游”的理想之地.為了將來更好地推進“研學游”項目,某旅游學校一位實習生,在某旅行社實習期間,把“研學游”項目分為科技體驗游、民俗人文游、自然風光游三種類型,并在前幾年該旅行社接待的全省高一學生“研學游”學校中,隨機抽取了100所學校,統(tǒng)計如下:
研學游類型 | 科技體驗游 | 民俗人文游 | 自然風光游 |
學校數(shù) | 40 | 40 | 20 |
該實習生在明年省內(nèi)有意向組織高一“研學游”學校中,隨機抽取了3所學校,并以統(tǒng)計的頻率代替學校選擇研學游類型的概率(假設每所學校在選擇研學游類型時僅選擇其中一類,且不受其他學校選擇結果的影響):
(1)若這3所學校選擇的研學游類型是“科技體驗游”和“自然風光游”,求這兩種類型都有學校選擇的概率;
(2)設這3所學校中選擇“科技體驗游”學校數(shù)為隨機變量X,求X的分布列與數(shù)學期望.
【答案】(1) (2)分布列見解析,
【解析】
(1)統(tǒng)計數(shù)據(jù)說明學校選擇“科技體驗游”的概率為,選擇“自然風光游”的概率為,它們相互獨立,兩種類型都有學校選擇則分為兩類:兩所學校選“科技體驗游”,一所學校選“自然風光游”或者一所學校選“科技體驗游”,兩所學校選“自然風光游”,由此可計算概率;
(2)可能取值為0,1,2,3.,依次計算出概率可得概率分布列,由期望公式可計算期望.
(1)依題意,學校選擇“科技體驗游”的概率為,選擇“自然風光游”的概率為,
∴若這3所學校選擇研學游類型為“科技體驗游”和“自然風光游”,則這兩種類型都有學校選擇的概率為:.
(2)可能取值為0,1,2,3.
則,,
,,
∴的分布列為
0 | 1 | 2 | 3 | |
∴.
科目:高中數(shù)學 來源: 題型:
【題目】某花圃為提高某品種花苗質(zhì)量,開展技術創(chuàng)新活動,在實驗地分別用甲、乙方法培育該品種花苗.為觀測其生長情況,分別在實驗地隨機抽取各50株,對每株進行綜合評分,將每株所得的綜合評分制成如圖所示的頻率分布直方圖,記綜合評分為80及以上的花苗為優(yōu)質(zhì)花苗.
(1)求圖中的值,并估計該品種花苗綜合評分的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表);
(2)填寫下面的列聯(lián)表,并判斷是否有99%的把握認為優(yōu)質(zhì)花苗與培駐外方法有關.
優(yōu)質(zhì)花苗 | 非優(yōu)質(zhì)花苗 | 合計 | |
甲培育法 | 20 | ||
乙培育法 | 10 | ||
合計 |
附:下面的臨界值表僅供參考.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱ABCA1B1C1中,∠BAC=90°,AB=AC=2,點M為A1C1的中點,點N為AB1上一動點.若點N為AB1的中點且CM⊥MN,求二面角MCNA的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“一帶一路”是“絲綢之路經(jīng)濟帶”和“21世紀海上絲綢之路”的簡稱,旨在積極發(fā)展我國與沿線國家經(jīng)濟合作關系,共同打造政治互信、經(jīng)濟融合、文化包容的命運共同體.自2013年以來,“一帶一路”建設成果顯著.下圖是2013-2017年,我國對“一帶一路”沿線國家進出口情況統(tǒng)計圖.下列描述錯誤的是( )
A.這五年,2013年出口額最少
B.這五年,出口總額比進口總額多
C.這五年,出口增速前四年逐年下降
D.這五年,2017年進口增速最快
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),則下列關于函數(shù)的說法,不正確的是( )
A.的圖象關于對稱
B.在上有2個零點
C.在區(qū)間上單調(diào)遞減
D.函數(shù)圖象向右平移個單位,所得圖像對應的函數(shù)為奇函數(shù)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】實驗中學在教工活動中心舉辦了一場臺球比賽,為了節(jié)約時間比賽采取“3局2勝制”.現(xiàn)有甲、乙二人,已知每局甲勝的概率為0.6,乙勝的概率為0.4.求:
(1)這場比賽甲獲勝的概率;
(2)這場比賽乙所勝局數(shù)的數(shù)學期望.
(3)這場比賽在甲獲得比賽勝利的條件下,乙有一局獲勝的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,AC⊥BC,O為AB中點,且DC⊥平面ABC,DC∥BE.已知AC=BC=DC=BE=2.
(1)求直線AD與CE所成角;
(2)求二面角O-CE-B的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】市場上有一種新型的強力洗衣粉,特點是去污速度快,已知每投放(且)個單位的洗衣粉液在一定量水的洗衣機中,它在水中釋放的濃度(克/升)隨著時間(分鐘)變化的函數(shù)關系式近似為,其中,若多次投放,則某一時刻水中的洗衣液濃度為每次投放的洗衣液在相應時刻所釋放的濃度之和,根據(jù)經(jīng)驗,當水中洗衣液的濃度不低于4(克/升)時,它才能起有效去污的作用.
(1)若只投放一次4個單位的洗衣液,則有效去污時間可能達幾分鐘?
(2)若先投放2個單位的洗衣液,6分鐘后投放個單位的洗衣液,要使接下來的4分鐘中能夠持續(xù)有效去污,試求的最小值(精確到0.1,參考數(shù)據(jù): 取).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com