【題目】隨著智能手機的普及,使用手機上網(wǎng)成為了人們日常生活的一部分,很多消費者對手機流量的需求越來越大.長沙某通信公司為了更好地滿足消費者對流量的需求,準備推出一款流量包.該通信公司選了5個城市(總人數(shù)、經(jīng)濟發(fā)展情況、消費能力等方面比較接近)采用不同的定價方案作為試點,經(jīng)過一個月的統(tǒng)計,發(fā)現(xiàn)該流量包的定價:(單位:元/月)和購買人數(shù)(單位:萬人)的關系如表:

(1)根據(jù)表中的數(shù)據(jù),運用相關系數(shù)進行分析說明,是否可以用線性回歸模型擬合的關系?并指出是正相關還是負相關;

(2)①求出關于的回歸方程;

②若該通信公司在一個類似于試點的城市中將這款流量包的價格定位25元/ 月,請用所求回歸方程預測長沙市一個月內購買該流量包的人數(shù)能否超過20 萬人.

參考數(shù)據(jù):,,.

參考公式:相關系數(shù),回歸直線方程,

其中,.

【答案】(1)見解析;(2)①;②一個月內購買該流量包的人數(shù)會超過20萬人.

【解析】

(1) 根據(jù)題意,得,計算出相關系數(shù),從而可以作出判斷;

(2)求出回歸直線方程,②由①知,若,,從而預測長沙市一個月內購買該流量包的人數(shù)會超過20萬人

(1)根據(jù)題意,得,

.

可列表如下

根據(jù)表格和參考數(shù)據(jù),得

.

因而相關系數(shù).

由于很接近1,因而可以用線性回歸方程模型擬合的關系.

由于故其關系為負相關.

(2)①,,

因而關于的回歸方程為.

②由①知,若,,故若將流量包的價格定為25/月,可預測長沙市一個月內購買該流量包的人數(shù)會超過20萬人.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某公司計劃購買1臺機器,該種機器使用三年后即被淘汰.在購進機器時,可以一次性額外購買幾次維修服務,每次維修服務費用200元,另外實際維修一次還需向維修人員支付小費,小費每次50元.在機器使用期間,如果維修次數(shù)超過購機時購買的維修服務次數(shù),則每維修一次需支付維修服務費用500元,無需支付小費.現(xiàn)需決策在購買機器時應同時一次性購買幾次維修服務,為此搜集并整理了100臺這種機器在三年使用期內的維修次數(shù),得下面統(tǒng)計表:

維修次數(shù)

8

9

10

11

12

頻數(shù)

10

20

30

30

10

x表示1臺機器在三年使用期內的維修次數(shù),y表示1臺機器在維修上所需的費用(單位:元),表示購機的同時購買的維修服務次數(shù).

(1)若=10,求yx的函數(shù)解析式;

(2)若要求“維修次數(shù)不大于的頻率不小于0.8,求n的最小值;

(3)假設這100臺機器在購機的同時每臺都購買10次維修服務,或每臺都購買11次維修服務,分別計算這100臺機器在維修上所需費用的平均數(shù),以此作為決策依據(jù),購買1臺機器的同時應購買10次還是11次維修服務?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如果函數(shù)的定義域為,且存在實常數(shù),使得對于定義域內任意,都有成立,則稱此函數(shù)具有“性質.

1)判斷函數(shù)是否具有“性質”,若具有“性質”,求出所有的值的集合,若不具有“性質”,請說明理由;

2)已知函數(shù)具有“性質”,且當時,,求函數(shù)在區(qū)間上的值域;

3)已知函數(shù)既具有“性質”,又具有“性質”,且當時,,若函數(shù)的圖像與直線2017個公共點,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】繼共享單車之后,又一種新型的出行方式------“共享汽車”也開始亮相北上廣深等十余大中城市,一款叫“一度用車”的共享汽車在廣州提供的車型是“奇瑞eQ”,每次租車收費按行駛里程加用車時間,標準是“1元/公里+0.1元/分鐘”,李先生家離上班地點10公里,每天租用共享汽車上下班,由于堵車因素,每次路上開車花費的時間是一個隨機變量,根據(jù)一段時間統(tǒng)計40次路上開車花費時間在各時間段內的情況如下:

時間(分鐘)

次數(shù)

8

14

8

8

2

以各時間段發(fā)生的頻率視為概率,假設每次路上開車花費的時間視為用車時間,范圍為分鐘.

(Ⅰ)若李先生上.下班時租用一次共享汽車路上開車不超過45分鐘,便是所有可選擇的交通工具中的一次最優(yōu)選擇,設是4次使用共享汽車中最優(yōu)選擇的次數(shù),求的分布列和期望.

(Ⅱ)若李先生每天上下班使用共享汽車2次,一個月(以20天計算)平均用車費用大約是多少(同一時段,用該區(qū)間的中點值作代表).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出如下兩個命題:命題;命題已知函數(shù),且對任意,,,都有,求實數(shù)的取值范圍,使命題為假,為真.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中a >2.

(I)討論函數(shù)f(x)的單調性;

(II)若對于任意的,恒有,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量,向量,函數(shù).

1)求函數(shù)在區(qū)間上的最大值和最小值;

2)求證:存在大于的正實數(shù),使得不等式在區(qū)間有解.(其中為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,橢圓短軸的一個端點與兩個焦點構成的三角形的面積為.

(1)求橢圓的方程式;

(2)已知動直線與橢圓相交于兩點.

①若線段中點的橫坐標為,求斜率的值;

②已知點,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

以平面直角坐標系的原點為極點,軸的正半軸為極軸,建立極坐標系,且兩種坐標系中采取相同的單位長度.曲線的極坐標方程是,直線的參數(shù)方程是為參數(shù)).

(1)求曲線的直角坐標方程與直線的普通方程;

(2)設點,若直線與曲線交于兩點,求的值.

查看答案和解析>>

同步練習冊答案