【題目】已知函數(shù),其中a >2.
(I)討論函數(shù)f(x)的單調(diào)性;
(II)若對于任意的,恒有,求a的取值范圍.
【答案】(Ⅰ)見解析(Ⅱ)(2,5]
【解析】分析:(Ⅰ)確定函數(shù)的定義域,求導(dǎo)數(shù)后由可得增區(qū)間,由可得減區(qū)間.(Ⅱ)原不等式可化為令,則得在上單調(diào)遞增,故在上恒成立,解不等式可得所求范圍.
詳解:(I)由題意得函數(shù)f(x)的定義域?yàn)?/span>,
∵,
∴,
令,得或,
∵ ,
∴.
由,解得0<x<1或x>a-1,
由,解得1<x<a-1 .
∴函數(shù)f(x)的單調(diào)遞增區(qū)間為,單調(diào)減區(qū)間為(1,a-1).
(II)設(shè),則不等式等價(jià)于·
即
令,
則函數(shù)g(x)在x∈(0,+∞)上為增函數(shù).
∴/span>在上恒成立,
而,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立.
∴,
∵ >2 ,
∴,
解得.
∴實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知直線:(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)的直角坐標(biāo)為,直線與曲線的交點(diǎn)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,,為的中點(diǎn),現(xiàn)將與折起,使得平面及平面都與平面垂直.
(1)求證:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為,點(diǎn)的坐標(biāo)為,點(diǎn)在拋物線上,且滿足,(為坐標(biāo)原點(diǎn)).
(1)求拋物線的方程;
(2)過點(diǎn)作斜率乘積為1的兩條不重合的直線,且與拋物線交于兩點(diǎn),與拋物線交于兩點(diǎn),線段的中點(diǎn)分別為,求證:直線過定點(diǎn),并求出定點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著智能手機(jī)的普及,使用手機(jī)上網(wǎng)成為了人們?nèi)粘I畹囊徊糠,很多消費(fèi)者對手機(jī)流量的需求越來越大.長沙某通信公司為了更好地滿足消費(fèi)者對流量的需求,準(zhǔn)備推出一款流量包.該通信公司選了5個(gè)城市(總?cè)藬?shù)、經(jīng)濟(jì)發(fā)展情況、消費(fèi)能力等方面比較接近)采用不同的定價(jià)方案作為試點(diǎn),經(jīng)過一個(gè)月的統(tǒng)計(jì),發(fā)現(xiàn)該流量包的定價(jià):(單位:元/月)和購買人數(shù)(單位:萬人)的關(guān)系如表:
(1)根據(jù)表中的數(shù)據(jù),運(yùn)用相關(guān)系數(shù)進(jìn)行分析說明,是否可以用線性回歸模型擬合與的關(guān)系?并指出是正相關(guān)還是負(fù)相關(guān);
(2)①求出關(guān)于的回歸方程;
②若該通信公司在一個(gè)類似于試點(diǎn)的城市中將這款流量包的價(jià)格定位25元/ 月,請用所求回歸方程預(yù)測長沙市一個(gè)月內(nèi)購買該流量包的人數(shù)能否超過20 萬人.
參考數(shù)據(jù):,,.
參考公式:相關(guān)系數(shù),回歸直線方程,
其中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)是奇函數(shù),求實(shí)數(shù)的值;
(2)若關(guān)于的方程在區(qū)間上有解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中,,分別是棱,的中點(diǎn),點(diǎn)在棱上,且,,.
(1)求證:平面;
(2)當(dāng)時(shí),求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,點(diǎn),是圓上一動(dòng)點(diǎn),點(diǎn)在線段上,點(diǎn)在半徑上,且滿足.
(1)當(dāng)在圓上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡的方程;
(2)設(shè)過點(diǎn)的直線與軌跡交于點(diǎn)(不在軸上),垂直于的直線交于點(diǎn),與軸交于點(diǎn),若,求點(diǎn)橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個(gè)獎(jiǎng)杯的三視圖,試根據(jù)獎(jiǎng)杯的三視圖計(jì)算它的表面積和體積(可用計(jì)算工具,尺寸如圖,單位:cm,π取3.14,結(jié)果取整數(shù))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com