已知集合M={3,2a},N={a,b},若M∩N={4},則M∪N=
 
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由題意可得 2a =4,即 a=2,從而得到 M={3,4},N={2,4},進(jìn)而得到M∪N.
解答: 解:解:∵集合M={3,2a},N={a,b},若M∩N={4},
∴2a =4,∴a=2.
∴M={3,4},N={2,4},∴M∪N={2,3,4}.
故答案為:{2,3,4}.
點(diǎn)評(píng):本題主要考查集合的表示方法,兩個(gè)集合的交集、并集的定義和求法.求出a=2,是解題的突破口.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={x||x|≤1,x∈R},B={x|x≥0,x∈R},則A∩B=( 。
A、{x|-1≤x≤1}
B、{x|x≥0}
C、{x|0≤x≤1}
D、∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我市某中學(xué)一研究性學(xué)習(xí)小組,在某一高速公路服務(wù)區(qū),從小型汽車中按進(jìn)服務(wù)區(qū)的先后,每間隔5輛就抽取一輛的抽樣方法抽取40名駕駛員進(jìn)行詢問調(diào)查,將他們?cè)谀扯胃咚俟返能囁伲╧m/h)分成六段:[70,75),[75,80),[80,85),[85,90),[90,95),[95,100],統(tǒng)計(jì)后得到如圖的頻率分布直方圖.
(1)此研究性學(xué)習(xí)小組在采樣中,用到的是什么抽樣方法?并求這40輛小型汽車車速的眾數(shù)和中位數(shù)的估計(jì)值;
(2)從車速在[80,90)的車輛中任意抽取3輛車,求車速在[80,85),[85,90)內(nèi)都有車輛的概率;
(3)若從車速在[70,80)的車輛中任意抽取3輛,求車速在[75,80)的車輛數(shù)的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平行四邊形ABCD的兩條對(duì)角線AC與BD交于E,O是任意一點(diǎn),求證:
OA
+
OB
+
OC
+
OD
=4
OE

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,多面體OABCD,AB=CD=2,AD=BC=2
3
,AC=BD=
10
,且OA,OB,OC兩兩垂直,給出下列4個(gè)結(jié)論:
①三棱錐O-ABC的體積是定值;
②直線AD與OB所成的角是60°;
③球面經(jīng)過點(diǎn)A、B、C、D兩點(diǎn)的球的直徑是
13
;
④直線OB∥平面ACD.
其中正確的結(jié)論是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式ax2+8ax+21<0的解集是{x|1<x<7},那么a的值是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一圓錐的母線長(zhǎng)為6,底面半徑為3,用該圓錐截一圓臺(tái)截得圓臺(tái)的母線長(zhǎng)為4,則圓臺(tái)的另一底面半徑為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α,β∈(
4
,π),tan(α-
π
4
)=-2,sin(α+β)=-
3
5

(1)求sin2α的值;
(2)求tan(β+
π
4
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷下列函數(shù)的奇偶性
(1)f(x)=(x+1)
1-x
1+x

(2)f(x)=x2-x3
(3)f(x)=
x2+x,x<0
-x2+x,x>0

(4)f(x)=
x2-1
+
1-x2

(5)f(x)=
4-x2
|x+3|-3

查看答案和解析>>

同步練習(xí)冊(cè)答案