設(shè)△ABC內(nèi)角A,B,C所對邊分別為a,b,c已知B∈(0,
π
2
),b=7,外接圓半徑R=
7
3
3
,三角形面積S=10
3
,求a,c的值.
考點(diǎn):正弦定理
專題:解三角形
分析:利用正弦定理列出關(guān)系式,把b,R的值代入求出sinB的值,根據(jù)B為銳角確定出B的度數(shù),利用三角形面積公式列出關(guān)系式,把sinB與已知面積代入求出ac=40,再利用余弦定理列出關(guān)系式,把b與cosB的值代入列出關(guān)于a與c的方程,聯(lián)立求出a與c的值即可.
解答: 解:∵b=7,外接圓半徑R=
7
3
3
,
∴由正弦定理可得sinB=
b
2R
=
7
7
3
3
=
3
2

∵B∈(0,
π
2
),
∴B=
π
3

又S=
1
2
acsinB=10
3
,
∴ac=40,①
∵由余弦定理得:b2=a2+c2-2accosB,
∴a2+c2-ac=49,②
聯(lián)立①②,
解得:a=5,c=8;或a=8,b=5.
點(diǎn)評:此題考查了正弦、余弦定理,以及三角形面積公式,熟練掌握定理及公式是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,A,B是圓O上的兩點(diǎn),且OA⊥OB,OA=2,C為OA的中點(diǎn),連接BC并延長交圓O于點(diǎn)D,則CD=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z滿足:z•
.
z
+2iz=8+6i,求復(fù)數(shù)z的實(shí)部與虛部的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M是滿足下列性質(zhì)的函數(shù)f(x)的全體:存在非零常數(shù)T,使得對任意x∈R,有f(x+T)=Tf(x)成立.
(1)函數(shù)f(x)=x是否屬于M?說明理由.
(2)證明函數(shù)f(x)=sinπx∈M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求過點(diǎn)A(3,
3
),B(0,0),且圓心在x軸上的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

π
4
<θ<
π
3
,則下列不等式成立的是( 。
A、sinθ>cosθ>tanθ
B、cosθ>tanθ>sinθ
C、sinθ>tanθ>cosθ
D、tanθ>sinθ>cosθ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an},S10=100,S20=10,S30=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(0,1),B(-2,3)C(-1,2),D(1,5),則向量
AC
BD
方向上的投影為( 。
A、
2
13
13
B、-
2
13
13
C、
13
13
D、-
13
13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在實(shí)數(shù)集上的函數(shù)fn(x)=xn,n∈N*
(1)記函數(shù)F(x)=bf1(x)-lnf3(x),x∈(0,e],若F(x)的最小值為6,求實(shí)數(shù)b的值;
(2)對于(1)中的b,設(shè)函數(shù)g(x)=(
b
3
x,A(x1,y1),B(x2,y2)(x1<x2)是函數(shù)g(x)圖象上兩點(diǎn),若g'(x0)=
y2-y1
x2-x1
,試證明x0<x2

查看答案和解析>>

同步練習(xí)冊答案