【題目】金剛石是碳原子的一種結(jié)構(gòu)晶體,屬于面心立方晶胞(晶胞是構(gòu)成晶體的最基本的幾何單元),即碳原子處在立方體的個頂點,個面的中心,此外在立方體的對角線的處也有個碳原子,如圖所示(綠色球),碳原子都以共價鍵結(jié)合,原子排列的基本規(guī)律是每一個碳原子的周圍都有個按照正四面體分布的碳原子.設(shè)金剛石晶胞的棱長為,則正四面體的棱長為__________;正四面體的外接球的體積是__________.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一場突如其來的新冠肺炎疫情在全國蔓延,在黨中央的堅強領(lǐng)導(dǎo)和統(tǒng)一指揮下,全國人民眾志成城、團(tuán)結(jié)一心,共抗疫情。每天測量體溫也就成為了所有人的一項責(zé)任,一般認(rèn)為成年人腋下溫度(單位:℃)平均在36℃~37℃之間即為正常體溫,超過37.1℃即為發(fā)熱。發(fā)熱狀態(tài)下,不同體溫可分成以下三種發(fā)熱類型:低熱:;高熱:;超高熱(有生命危險):.
某位患者因發(fā)熱,雖排除肺炎,但也于12日至26日住院治療. 醫(yī)生根據(jù)病情變化,從14日開始,以3天為一個療程,分別用三種不同的抗生素為該患者進(jìn)行消炎退熱. 住院期間,患者每天上午8:00服藥,護(hù)士每天下午16:00為患者測量腋下體溫記錄如下:
抗生素使用情況 | 沒有使用 | 使用“抗生素A”治療 | 使用“抗生素B”治療 | |||||
日期 | 12日 | 13日 | 14日 | 15日 | 16日 | 17日 | 18日 | 19日 |
體溫(℃) | 38.7 | 39.4 | 39.7 | 40.1 | 39.9 | 39.2 | 38.9 | 39.0 |
抗生素使用情況 | 使用“抗生素C”治療 | 沒有使用 | |||||
日期 | 20日 | 21日 | 22日 | 23日 | 24日 | 25日 | 26日 |
體溫(℃) | 38.4 | 38.0 | 37.6 | 37.1 | 36.8 | 36.6 | 36.3 |
(1)請你計算住院期間該患者體溫不低于39℃的各天體溫平均值;
(2)在18日—22日期間,醫(yī)生會隨機選取3天在測量體溫的同時為該患者進(jìn)行某一特殊項目“項目”的檢查,求至少兩天在高熱體溫下做“項目”檢查的概率;
(3)抗生素治療一般在服藥后2-8個小時就能出現(xiàn)血液濃度的高峰,開始?xì)缂?xì)菌,達(dá)到消炎退熱效果.假設(shè)三種抗生素治療效果相互獨立,請依據(jù)表中數(shù)據(jù),判斷哪種抗生素治療效果最佳,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正四面體P-ABC的棱長均為a,O為正四面體P-ABC的外接球的球心,過點O作平行于底面ABC的平面截正四面體P-ABC,得到三棱錐P-A1B1C1和三棱臺ABC-A1B1C1,那么三棱錐P-A1B1C1的外接球的表面積為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大型科學(xué)競技真人秀節(jié)目挑選選手的方式為:不但要對選手的空間感知、照相式記憶能力進(jìn)行考核,而且要讓選手經(jīng)過名校最權(quán)威的腦力測試,120分以上才有機會入圍.某重點高校準(zhǔn)備調(diào)查腦力測試成績是否與性別有關(guān),在該高校隨機抽取男、女學(xué)生各100名,然后對這200名學(xué)生進(jìn)行腦力測試.規(guī)定:分?jǐn)?shù)不小于120分為“入圍學(xué)生”,分?jǐn)?shù)小于120分為“未入圍學(xué)生”.已知男生入圍24人,女生未入圍80人.
(1)根據(jù)題意,填寫下面的2×2列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有95%以上的把握認(rèn)為腦力測試后是否為“入圍學(xué)生”與性別有關(guān);
性別 | 入圍人數(shù) | 未入圍人數(shù) | 總計 |
男生 | |||
女生 | |||
總計 |
(2)用分層抽樣的方法從“入圍學(xué)生”中隨機抽取11名學(xué)生,求這11名學(xué)生中男、女生人數(shù);若抽取的女生的腦力測試分?jǐn)?shù)各不相同(每個人的分?jǐn)?shù)都是整數(shù)),分別求這11名學(xué)生中女生測試分?jǐn)?shù)平均分的最小值.
附:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】垃圾分類是對垃圾進(jìn)行有效處置的一種科學(xué)管理方法,為了了解居民對垃圾分類的知曉率和參與率,引導(dǎo)居民積極行動,科學(xué)地進(jìn)行垃圾分類,某小區(qū)隨機抽取年齡在區(qū)間上的50人進(jìn)行調(diào)研,統(tǒng)計出年齡頻數(shù)分布及了解垃圾分類的人數(shù)如下表:
年齡 | ||||||
頻數(shù) | 5 | 10 | 10 | 15 | 5 | 5 |
了解 | 4 | 5 | 8 | 12 | 2 | 1 |
(1)填寫下面2×2列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.01的前提下認(rèn)為以65歲為分界點居民對了解垃圾分類的有關(guān)知識有差異;
年齡低于65歲的人數(shù) | 年齡不低于65歲的人數(shù) | 合計 | |
了解 | |||
不了解 | |||
合計 |
(2)若對年齡在,的被調(diào)研人中各隨機選取2人進(jìn)行深入調(diào)研,記選中的4人中不了解垃圾分類的人數(shù)為X,求隨機變量X的分布列和數(shù)學(xué)期望
參考公式和數(shù)據(jù)
,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)若函數(shù)有兩個零點,求的取值范圍;
(2)證明:當(dāng)時,對任意滿足的正實數(shù),,都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠為了提高生產(chǎn)效率,對生產(chǎn)設(shè)備進(jìn)行了技術(shù)改造,為了對比技術(shù)改造后的效果,采集了技術(shù)改造前后各20次連續(xù)正常運行的時間長度(單位:天)數(shù)據(jù),整理如下:
改造前:19,31,22,26,34,15,22,25,40,35,18,16,28,23,34,15,26,20,24,21
改造后:32,29,41,18,26,33,42,34,37,39,33,22,42,35,43,27,41,37,38,36
(1)完成下面的列聯(lián)表,并判斷能否有99%的把握認(rèn)為技術(shù)改造前后的連續(xù)正常運行時間有差異?
超過30 | 不超過30 | |
改造前 | ||
改造后 |
(2)工廠的生產(chǎn)設(shè)備的運行需要進(jìn)行維護(hù),工廠對生產(chǎn)設(shè)備的生產(chǎn)維護(hù)費用包括正常維護(hù)費,保障維護(hù)費兩種.對生產(chǎn)設(shè)備設(shè)定維護(hù)周期為T天(即從開工運行到第kT天,k∈N*)進(jìn)行維護(hù).生產(chǎn)設(shè)備在一個生產(chǎn)周期內(nèi)設(shè)置幾個維護(hù)周期,每個維護(hù)周期相互獨立.在一個維護(hù)周期內(nèi),若生產(chǎn)設(shè)備能連續(xù)運行,則只產(chǎn)生一次正常維護(hù)費,而不會產(chǎn)生保障維護(hù)費;若生產(chǎn)設(shè)備不能連續(xù)運行,則除產(chǎn)生一次正常維護(hù)費外,還產(chǎn)生保障維護(hù)費.經(jīng)測算,正常維護(hù)費為0.5萬元/次;保障維護(hù)費第一次為0.2萬元/周期,此后每增加一次則保障維護(hù)費增加0.2萬元.現(xiàn)制定生產(chǎn)設(shè)備一個生產(chǎn)周期(以120天計)內(nèi)的維護(hù)方案:T=30,k=1,2,3,4.以生產(chǎn)設(shè)備在技術(shù)改造后一個維護(hù)周期內(nèi)能連續(xù)正常運行的頻率作為概率,求一個生產(chǎn)周期內(nèi)生產(chǎn)維護(hù)費的分布列及均值.
附:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com