設(shè)f(x)是定義在R上的周期為3的周期函數(shù),如圖表示該函數(shù)在區(qū)間(-2,1]上的圖象,則f(2013)+f(2014)=
 
考點:函數(shù)的周期性
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:首先根據(jù)f(x)是定義在R上的周期為3的周期函數(shù),判斷出f(2013)+f(2014)=f(671×3+0)+f(671×3+1)=f(0)+f(1);然后根據(jù)函數(shù)的圖象,找出f(0)、f(1)的值,代入求解即可.
解答: 解:由于f(x)是定義在R上的周期為3的周期函數(shù),
所以f(2013)+f(2014)=f(671×3+0)+f(671×3+1)=f(0)+f(1),
而由圖象可知f(0)=0,f(1)=1,
所以f(2013)+f(2014)=0+1=1.
故答案為:1.
點評:此題主要考查了函數(shù)的周期性的運用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知m,n,s,t∈R+,m+2n=5,
m
s
+
n
t
=9,且m,n是常數(shù),又s+2t的最小值是1,則m+3n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinαcosα=
1
8
,則cosα-sinα的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線
x=3+
3
2
t
y=1+
1
2
t
(t為參數(shù))的傾斜角是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正三棱錐P-ABC中,M,N分別是PB,PC的中點,若截面AMN⊥平面PBC,則此棱錐中側(cè)面積與底面積的比為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x≥0,y≥0且x+2y=
1
2
,則函數(shù)u=log0.5(8xy+4y2+1)的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

離心率e=
3
2
且過點(2,0)的橢圓的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三角形ABC中,
AB
AC
=|
BC
|=8,M為BC邊的中點,則中線AM的長為( 。
A、2
5
B、2
6
C、2
7
D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)U=R,A={x|0<x≤2},B={x|x≤1},則A∩∁UB=( 。
A、{x|0<x≤1}
B、R
C、{x|x<0}
D、{x|1<x≤2}

查看答案和解析>>

同步練習(xí)冊答案