【題目】已知f(x)=log2(1+x)+log2(1﹣x).
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性,并加以說明;
(3)求f( )的值.

【答案】
(1)解:由 即﹣1<x<1.

所以函數(shù)f(x)的定義域為{x|﹣1<x<1}


(2)解:證明如下:

①函數(shù)f(x)的定義域為{x|﹣1<x<1},

②f(﹣x)=log2[1+(﹣x)]+log2[1﹣(﹣x)]=log2(1﹣x)+log2(1+x)=f(x),

由①②得:函數(shù)f(x)=log2(1+x)+log2(1﹣x)為偶函數(shù)


(3)解: =log2 =﹣1
【解析】(1)根據(jù)對數(shù)的定義確定對數(shù)函數(shù)的定義域;(2)根據(jù)奇函數(shù)與偶函數(shù)的定義判斷函數(shù)的奇偶性;(3)將自變量的值代入函數(shù)的對應(yīng)法則,根據(jù)對數(shù)的運(yùn)算法則解題即可.
【考點精析】通過靈活運(yùn)用函數(shù)的定義域及其求法和函數(shù)的奇偶性,掌握求函數(shù)的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數(shù);②是分式函數(shù)時,定義域是使分母不為零的一切實數(shù);③是偶次根式時,定義域是使被開方式為非負(fù)值時的實數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當(dāng)對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零;偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點對稱即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C:f(x)=x3﹣ax+a,若過曲線C外一點A(1,0)引曲線C的兩條切線,它們的傾斜角互補(bǔ),則a的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)三種型號的轎車,產(chǎn)量分別是1600輛、6000輛和2000輛,為檢驗公司的產(chǎn)品質(zhì)量,現(xiàn)從這三種型號的轎車種抽取48輛進(jìn)行檢驗,這三種型號的轎車依次應(yīng)抽取

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知雙曲線 (a>0,b>0)的左、右焦點分別為F1、F2 , |F1F2|=8,P是雙曲線右支上的一點,直線F2P與y軸交于點A,△APF1的內(nèi)切圓在邊PF1上的切點為Q,若|PQ|=2,則該雙曲線的離心率為(

A.
B.
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合A={x|0≤x≤2},B={y|1≤y≤2},若對于函數(shù)y=f(x),其定義域為A,值域為B,則這個函數(shù)的圖象可能是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二元一次不等式組 所表示的平面區(qū)域為M,若M與圓(x﹣4)2+(y﹣1)2=a(a>0)至少有兩個公共點,則實數(shù)a的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點,M是棱PC上的點,PA=PD=2,BC= AD=1,CD=

(1)求證:平面PQB⊥平面PAD;
(2)若二面角M﹣QB﹣C為30°,求線段PM與線段MC的比值t.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】x∈R,則f(x)與g(x)表示同一函數(shù)的是( )
A.f(x)=x2
B.f(x)=1,g(x)=(x﹣1)0
C.
D. ,g(x)=x﹣3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)= (x∈R,且x≠﹣1),g(x)=x2+2(x∈R).
(1)求f(2),g(2)的值;
(2)求f(g(2)),g(f(2))的值;
(3)求f(g(x)).

查看答案和解析>>

同步練習(xí)冊答案