【題目】已知函數(shù),.
(1)當(dāng)時(shí),求的單調(diào)增區(qū)間;
(2)若恰有三個(gè)不同的零點(diǎn)().
①求實(shí)數(shù)的取值范圍;
②求證:.
【答案】(1); (2)見(jiàn)解析.
【解析】
(1)直接利用導(dǎo)數(shù)求函數(shù)的單調(diào)遞增區(qū)間. (2)①關(guān)于的方程在上有三個(gè)不同的解.即關(guān)于的方程在上有三個(gè)不同的解.令,,再利用導(dǎo)數(shù)研究函數(shù)F(x)的圖像和值域,即得a的取值范圍. ②當(dāng)時(shí),.令,則,即,分析得到,,代入化簡(jiǎn)即證.
(1)當(dāng)時(shí),,定義域?yàn)?/span>.
.
所以,在上單調(diào)遞增;
即的單調(diào)增區(qū)間為.
(2)①由題意可得,關(guān)于的方程在上有三個(gè)不同的解.
即關(guān)于的方程在上有三個(gè)不同的解.
令,.
所以.
顯然,當(dāng)時(shí),,證明如下:
令,.
當(dāng)時(shí),,函數(shù)在上單調(diào)遞減;
當(dāng)時(shí),,函數(shù)在上單調(diào)遞增.
所以當(dāng)時(shí),取最小值.
所以,當(dāng)時(shí),.
令,可得或.
將x,h1(x),h(x)變化情況列表如下
極小值 | 極大值 |
又當(dāng)
所以,實(shí)數(shù)的取值范圍為.
②由①可知,當(dāng)時(shí),.
令,則,
即,,.
不妨設(shè),則.
又,,
當(dāng)時(shí),,在上單調(diào)遞增;
當(dāng)時(shí),,在上單調(diào)遞減.
顯然,當(dāng)時(shí),;當(dāng)時(shí),.
所以,.
所以
.
即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于函數(shù)下列命題錯(cuò)誤的是( )
A.函數(shù)的圖像關(guān)于軸對(duì)稱(chēng)
B.在區(qū)間上,函數(shù)是減函數(shù)
C.函數(shù)的最小值為
D.在區(qū)間上,函數(shù)是增函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠有25周歲以上(含25周歲)工人300名,25周歲以下工人200名.為研究工人的日平均生產(chǎn)量是否與年齡有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計(jì)了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,再將兩組工人的日平均生產(chǎn)件數(shù)分為5組:分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.
(I)從樣本中日平均生產(chǎn)件數(shù)不足60件的工人中隨機(jī)抽取2人,求至少抽到一名“25周歲以下組”工人的概率;
(II)規(guī)定日平均生產(chǎn)件數(shù)不少于80件者為“生產(chǎn)能手”,請(qǐng)你根據(jù)已知條件完成列聯(lián)表,并判斷是否有90%的把握認(rèn)為“生產(chǎn)能手與工人所在的年齡組有關(guān)”?
0.100 | 0.050 | 0.010 | 0.001 | |
k | 2.706 | 3.841 | 6.635 | 10.828 |
25周歲以上組 25周歲以下組
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】經(jīng)統(tǒng)計(jì)分析,我市城區(qū)某擁擠路段的車(chē)流速度v(單位:千米/小時(shí))是車(chē)流密度x(單位:輛/千米)的函數(shù).當(dāng)該路段的車(chē)流密度達(dá)到180輛/千米時(shí),造成堵塞,此時(shí)車(chē)流速度為0千米/小時(shí);當(dāng)車(chē)流密度不超過(guò)20輛/千米時(shí),車(chē)流速度為40千米/小時(shí);當(dāng)時(shí),車(chē)流速度v是車(chē)流密度x的一次函數(shù).
(1)當(dāng)時(shí),求函數(shù)的表達(dá)式;
(2)當(dāng)車(chē)流密度x為多大時(shí),該擁擠路段車(chē)流量(單位時(shí)間內(nèi)通過(guò)該路段某觀測(cè)點(diǎn)的車(chē)輛數(shù),單位:輛/小時(shí))可以達(dá)到最大,并求出最大值(精確到1輛/小時(shí)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為坐標(biāo)原點(diǎn),雙曲線上有兩點(diǎn)滿(mǎn)足,且點(diǎn)到直線的距離為,則雙曲線的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)拋物線上一點(diǎn)P(1,-2)作傾斜角互補(bǔ)的兩條直線,分別與拋物線交于點(diǎn).
(1)求的值;
(2)若,求面積的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等比數(shù)列{an}的各項(xiàng)均為正數(shù),2a2﹣5a1=3,a3a7=9a42;
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=anlog3an,求數(shù)列{bn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】共享單車(chē)是城市慢行系統(tǒng)的一種創(chuàng)新模式,對(duì)于解決民眾出行“最后一公里”的問(wèn)題特別見(jiàn)效,由于停取方便、租用價(jià)格低廉,各色共享單車(chē)受到人們的熱捧.某自行車(chē)廠為共享單車(chē)公司生產(chǎn)新樣式的單車(chē),已知生產(chǎn)新樣式單車(chē)的固定成本為20 000元,每生產(chǎn)一輛新樣式單車(chē)需要增加投入100元.根據(jù)初步測(cè)算,自行車(chē)廠的總收益(單位:元)滿(mǎn)足分段函數(shù) 其中x是新樣式單車(chē)的月產(chǎn)量(單位:輛),利潤(rùn)=總收益-總成本.
(1)試將自行車(chē)廠的利潤(rùn)y元表示為月產(chǎn)量x的函數(shù);
(2)當(dāng)月產(chǎn)量為多少件時(shí)自行車(chē)廠的利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),且.
(1)若函數(shù)在上恒有意義,求的取值范圍;
(2)是否存在實(shí)數(shù),使函數(shù)在區(qū)間上為增函數(shù),且最大值為?若存在求出的值,若不存在請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com