【題目】關(guān)于函數(shù)下列命題錯誤的是( )

A.函數(shù)的圖像關(guān)于軸對稱

B.在區(qū)間上,函數(shù)是減函數(shù)

C.函數(shù)的最小值為

D.在區(qū)間上,函數(shù)是增函數(shù).

【答案】B

【解析】

因為,證明函數(shù)的奇偶性和單調(diào)性,即可求得答案.

奇偶性證明:

,

為偶函數(shù)

單調(diào)性證明:

,

根據(jù)對數(shù)函數(shù)單調(diào)性可知:單調(diào)增函數(shù),

,根據(jù)對號函數(shù)圖像可知:

, 是單調(diào)遞增;

, 是單調(diào)遞減.

根據(jù)復合函數(shù)單調(diào)性同增異減可知:

,是單調(diào)遞增

,是單調(diào)遞減.

,取得最小值,.

偶函數(shù)圖像關(guān)于軸對稱可知:

,是單調(diào)遞減

,是單調(diào)遞增.

綜上所述, 對于A,函數(shù)的圖像關(guān)于軸對稱,A正確;

對于B,當時,是單調(diào)遞減

時,是單調(diào)遞增.故B錯誤;

對于C,函數(shù)的最小值為,故C正確;

對于D,在區(qū)間上,函數(shù)是增函數(shù),故D正確.

故選:B.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱臺ABC﹣A1B1C1中,D,E分別是AB,AC的中點,B1E⊥平面ABC,△AB1C是等邊三角形,AB=2A1B1,AC=2BC,∠ACB=90°.

(1)證明:B1C∥平面A1DE;

(2)求二面角A﹣BB1﹣C的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)).M是曲線上的動點,將線段OM繞O點順時針旋轉(zhuǎn)得到線段ON,設點N的軌跡為曲線.以坐標原點O為極點,軸正半軸為極軸建立極坐標系.

(1)求曲線的極坐標方程;

(2)在(1)的條件下,若射線與曲線分別交于A, B兩點(除極點外),且有定點,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為 為參數(shù)),以原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,曲線,的公共點為.

求直線的斜率;

Ⅱ)若點分別為曲線上的動點,當取最大值時,求四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)在一個選拔項目中,每個選手都需要進行4輪考核,每輪設有一個問題,能正確回答者進入下一輪考核,否則被淘汰。已知某選手能正確回答第一、二、三、四輪問題的概率分別為、、,且各輪問題能否正確回答互不影響。

)求該選手進入第三輪才被淘汰的概率;

)求該選手至多進入第三輪考核的概率;

)該選手在選拔過程中回答過的問題個數(shù)記為,求隨機變量的分布列和期望。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知在四棱錐中,底面是邊長為4的正方形,是正三角形,平面平面,分別是的中點.

(1)求證:平面平面;

(2)若是線段上一點,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

若函數(shù)內(nèi)有且只有一個零點,求此時函數(shù)的單調(diào)區(qū)間;

時,若函數(shù)上的最大值和最小值的和為1,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)當時,求處的切線方程;

(Ⅱ)討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)當時,求的單調(diào)增區(qū)間;

(2)若恰有三個不同的零點).

①求實數(shù)的取值范圍;

②求證:

查看答案和解析>>

同步練習冊答案