對于函數(shù)f(x)=ax2+bx+
b
a
-1.
(1)當(dāng)a=1,b=-2時,求函數(shù)f(x)的零點;
(2)若對任意實數(shù)b,函數(shù)f(x)恒有兩個相異的零點,求實數(shù)a的取值范圍.
考點:二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)把所給的數(shù)字代入解析式,得到函數(shù)的解析式,要求函數(shù)的零點,只要使函數(shù)等于0就可以,解一元二次方程,得到結(jié)果.
(2)函數(shù)恒成立問題,首先函數(shù)恒有兩個相異的零點,得到函數(shù)的判別式大于0,對于b的值,不管b取什么,都能夠使得不等式成立,注意再次使用函數(shù)的判別式.
解答: 解:(1)當(dāng)a=1,b=-2時,f(x)=x2-2x-3.
由f(x)=x2-2x-3=0,
解得x1=-1,x2=3
∴函數(shù)f(x)的零點為-1,3.
(2)∵對任意實數(shù)b,函數(shù)f(x)恒有兩個相異的零點,
∴a≠0,且△=b2-4b+4a>0對于b∈R恒成立,
∴△′=16-16a<0,解得a>1.
∴實數(shù)a的取值范圍是(1,+∞).
點評:本題考查函數(shù)的零點的判定,在第二問中,注意兩次使用函數(shù)的判別式,這是函數(shù)的綜合題目中常見的一種題型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xlnx+1
(Ⅰ)若x>0時,函數(shù)y=f(x)的圖象恒在直線y=kx上方,求實數(shù)k的取值范圍;
(Ⅱ)證明:當(dāng)時n∈N*,ln(n+1)>
1
2
+
1
3
+
1
4
+…+
1
n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C的對邊分別為a、b、c,且滿足
(2a-c)cosB
b
=cosC.
(1)求角B的大小;
(2)設(shè)
m
=(sinA,cos2A),
n
=(4k,1)(k>0),且
m
n
的最大值是5,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3x-x2,求方程f(x)=0在區(qū)間[-1,0]上實根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)在一個周期內(nèi)的圖象如圖所示.
(1)求f(x)的解析式;
(2)求f(
π
4
)+f(
4
)+f(
4
)+…+f(
2013π
4
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)用定義法證明函數(shù)f(x)=
1-x
x-
2
在(
2
,+∞)上是增函數(shù);
(2)判斷函數(shù)g(x)=
ex+e-x
ex-e-x
的奇偶性,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x2+2(a-1)x在區(qū)間(-∞,4]上是減函數(shù),求實數(shù)a的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平行四邊形ABCD中,BC=2,CD=
2
,BD⊥CD,正方形ADEF所在平面與平面ABCD垂直,G,H分別是DF,BE的中點
(1)求證:GH∥平面CDE
(2)求平面ECF與平面ABCD所成的二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由1,2,3,4,5組成的五位數(shù)字,恰有2個數(shù)位上的數(shù)字重復(fù)且十位上的數(shù)字大于百位上的數(shù)字的五位數(shù)的個數(shù)是
 
.(用數(shù)字作答)

查看答案和解析>>

同步練習(xí)冊答案