已知函數(shù)(a,b為常數(shù))且方程f(x)-x+12=0有兩個(gè)實(shí)根為x1="3," x2=4.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)的值域.

(1);(2)

解析試題分析:(1)由題意,由解析式得到關(guān)于x的方程,把方程的解代入得關(guān)于a,b的方程組,求出a,b即可.(2)由(1)得解析式,用分離系數(shù)法把式子進(jìn)行整理,再用均值不等式求式子的范圍,分成兩類(lèi)得到兩個(gè)范圍,取并集.
試題解析:(1)將x1="3," x2=4代人方程f(x)-x+12=0得
,∴
(2)令,則,,∴
遞增,遞減;遞減,遞增
∴函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/7d/c/vy1jm.png" style="vertical-align:middle;" />
考點(diǎn):1.函數(shù)解析式的求法;2.基本不等式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù) 的定義域是 , 的導(dǎo)函數(shù),且 上恒成立
(Ⅰ)求函數(shù) 的單調(diào)區(qū)間。
(Ⅱ)若函數(shù) ,求實(shí)數(shù)a的取值范圍
(Ⅲ)設(shè) 的零點(diǎn) , ,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)滿足,,且當(dāng)時(shí),.
(1)證明:函數(shù)是周期函數(shù);(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某通訊公司需要在三角形地帶OAC區(qū)域內(nèi)建造甲、乙兩種通信信號(hào)加強(qiáng)中轉(zhuǎn)站,甲中轉(zhuǎn)站建在區(qū)域BOC內(nèi),乙中轉(zhuǎn)站建在區(qū)域AOB內(nèi).分界線OB固定,且百米,邊界線AC始終過(guò)點(diǎn)B,邊界線OA、OC滿足∠AOC=75°,∠AOB=30°,∠BOC=45°,設(shè)百米,百米.
(1)試將表示成的函數(shù),并求出函數(shù)的解析式;
(2)當(dāng)取何值時(shí)?整個(gè)中轉(zhuǎn)站的占地面積最小,并求出其面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知定義在R上的奇函數(shù)有最小正周期2,且當(dāng)時(shí),
(1)求的值;
(2)求在[-1,1]上的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=|ax-2|+bln x(x>0,實(shí)數(shù)a,b為常數(shù)).
(1)若a=1,f(x)在(0,+∞)上是單調(diào)增函數(shù),求b的取值范圍;
(2)若a≥2,b=1,求方程f(x)=在(0,1]上解的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

下列四組函數(shù),表示同一函數(shù)的是                       
①.                   ②.
③.)  ④ .        

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

設(shè)且滿足,則的最小值為       ;若又滿足的取值范圍是          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

若行列式中,元素4的代數(shù)余子式大于0,
則x滿足的條件是________________________ .

查看答案和解析>>

同步練習(xí)冊(cè)答案