已知A(1,3),B(2,1),C(5,t),O為坐標(biāo)原點(diǎn).
(1)若BC⊥AB,求t值.
(2)若
OB
AC
,求t值及此時(shí)△ABC中角B的余弦值.
考點(diǎn):平面向量共線(平行)的坐標(biāo)表示,平面向量的坐標(biāo)運(yùn)算
專(zhuān)題:平面向量及應(yīng)用
分析:(1)由
BC
AB
,可得
BC
AB
=0.
(2)
AC
=(4,t-3),由
OB
AC
,利用向量共線定理可得t.可得
BC
=(3,4).再利用cosB=
BC
BA
|
BC
||
BA
|
即可得出.
解答: 解:(1)
BC
=(3,t-1),
AB
=(1,-2).
BC
AB
,∴
BC
AB
=3-2(t-1)=0,解得t=
5
2

(2)
AC
=(4,t-3),∵
OB
AC
,∴2(t-3)-4=0,解得t=5.∴
BC
=(3,4).
∴cosB=
BC
BA
|
BC
||
BA
|
=
5
5
5
=
5
5
點(diǎn)評(píng):本題考查了向量垂直與數(shù)量積的關(guān)系、向量的夾角公式、向量的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

sin420°-tan
π
3
=( 。
A、-
3
3
2
B、
3
3
2
C、-
3
2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的首項(xiàng)a1=
1
2
,且an+1=
1
2
an(n為偶數(shù))
an+
1
4
(n為奇數(shù))
,記bn=a2n-1-
1
4
(n∈N*)bn=a2n-1-
1
4
(n∈N*).
(1)求a2,a3;
(2)證明:{bn}是等比數(shù)列;
(3)求數(shù)列{
3n+1
bn
}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知傾斜角為
π
4
的直線f經(jīng)過(guò)點(diǎn)P(1,1).
(I)寫(xiě)出直線l的參數(shù)方程;
(Ⅱ)設(shè)直線l與x2+y2=4相交于A,B兩點(diǎn),求
1
|PA|
+
1
|PB|
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2-4x-12<0},B={x|b-3<x<b+7},M={x|-4≤x<5},全集U=R.
(1)求A∩M; 
(2)若B∪(∁uM)=R,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x|-1≤x<3},B={x|2x-4≥x≥x-2},C={x|2x+a>0}.
(1)求A∩B,A∪B;
(2)若滿(mǎn)足B⊆C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在四棱錐P-ABCD中,側(cè)面PCD⊥底面ABCD,PD⊥CD,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.
(1)求證:BC⊥平面PBD;
(2)設(shè)Q為側(cè)棱PC的中點(diǎn),求三棱錐Q-PBD的體積;
(3)若N是棱BC的中點(diǎn),則棱PC上是否存在點(diǎn)M,使MN平行于平面PDA?若存在,求PM的長(zhǎng);若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=cos(x+
2
3
π)+2cos2
x
2
,x∈R.
(Ⅰ)若x∈[-
π
2
,0],求f(x)的值域;
(Ⅱ)記△ABC的內(nèi)角A、B、C的對(duì)邊長(zhǎng)分別為a、b、c,若f(B)=1,b=1,c=
3
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)點(diǎn)M(2,0)做斜率為1的直線,交拋物線y2=4x相交于A,B兩點(diǎn),求|AB|.

查看答案和解析>>

同步練習(xí)冊(cè)答案