拋物線y=8x2的焦點(diǎn)坐標(biāo)為(  )
A、(0,
1
32
B、(
1
32
,0)
C、(2,0)
D、(0,2)
考點(diǎn):拋物線的簡(jiǎn)單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:化拋物線方程為標(biāo)準(zhǔn)方程,即可求得焦點(diǎn)坐標(biāo).
解答: 解:拋物線y=8x2可化為x2=
1
8
y,
∴拋物線y=8x2的焦點(diǎn)在y軸上,
∵2p=
1
8
,
1
2
p=
1
32

∴拋物線y=8x2的焦點(diǎn)坐標(biāo)為(0,
1
32
),
故選:A
點(diǎn)評(píng):本題考查拋物線的性質(zhì),化拋物線方程為標(biāo)準(zhǔn)方程是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖各圖均為學(xué)生作業(yè)中畫出的函數(shù)y=logax,y=ax,y=x+a在同一坐標(biāo)系中的圖象,則其中可能正確的圖形的序號(hào)是
 
(把你認(rèn)為正確的圖形的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

畫出函數(shù)y=
x
|x|•log2|x|
的大致圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a為實(shí)數(shù),函數(shù)f(x)=4x2+(x-a)|x-a|.
(1)若f(0)>1,求a的取值范圍;
(2)當(dāng)x∈(-∞,a)時(shí),求不等式f(x)>0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若方程
x2
3+k
+
y2
k-1
=1表示雙曲線,則實(shí)數(shù)k的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga
mx+1
x-1
(a>0,a≠1),在定義域(-∞,-1)∪(1,+∞)上是奇函數(shù).
(1)求m的值;
(2)判斷f(x)在區(qū)間(1,+∞)上的單調(diào)性,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

比較ln(x4+1)與ln(x2+1)的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)數(shù)f(x)=x+
a
x
(x≠0),
(1)寫出函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)a=2時(shí),用定義證明函數(shù)數(shù)f(x)在[
2
,+∞)上為增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-(a+4)x-2a2+5a+3(a∈R).
(1)當(dāng)a=3時(shí),求函數(shù)f(x)零點(diǎn);
(2)若方程f(x)=0的兩個(gè)實(shí)數(shù)根都在區(qū)間(-1,3),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案