空間中有7個(gè)點(diǎn),其中有3個(gè)點(diǎn)在同一直線上,此外再無任何三點(diǎn)共線,由這7個(gè)點(diǎn)最多可確定
 
個(gè)平面.
考點(diǎn):平面的基本性質(zhì)及推論
專題:計(jì)算題,空間位置關(guān)系與距離
分析:利用確定一個(gè)平面的條件,分類討論,即可得出結(jié)論.
解答: 解:假設(shè)除掉共線的三個(gè)點(diǎn)外的四個(gè)點(diǎn)不共面,則這四個(gè)點(diǎn)可以組成四個(gè)平面,
而那三個(gè)共線的點(diǎn),分別與另外的四個(gè)點(diǎn)可以構(gòu)成一個(gè)平面
所以共有8個(gè).
再考慮三個(gè)共線的一個(gè)點(diǎn),分別與另外四個(gè)點(diǎn)中的兩個(gè)點(diǎn)構(gòu)成一個(gè)平面 應(yīng)該是3×
C
2
4
=18
所以總共為18+8=26.
故答案為:26.
點(diǎn)評:本題考查平面的基本性質(zhì)及其推論,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,注意確定一個(gè)平面的條件的靈活運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=
4-x2
2
的圖象是曲線C.
(Ⅰ)在如圖的坐標(biāo)系中作出曲線C的示意圖,并標(biāo)出曲線C與x軸的左、右交點(diǎn)A1,A2;
(Ⅱ)設(shè)P是曲線C上位于第一象限的任意一點(diǎn),過A2作A2R垂直于直線A1P于R,設(shè)A2R與曲線C交于Q,求直線PQ斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖平面內(nèi)有三個(gè)向量
OA
、
OB
OC
,其中
OA
OB
的夾角為120°,
OA
OC
的夾角為30°,|
OA
|=|
OB
|=1,|
OC
|=4
3
.若
OC
OA
OB
(λ,μ),則λ+μ的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知空間中不共面的四個(gè)點(diǎn)A、B、C、D,每2個(gè)點(diǎn)之間均可連一條線段,任意取出三條線段中,A、B、C、D四個(gè)點(diǎn)均在這三條線段的端點(diǎn)中的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等腰△ABC中,AC=BC,延長BC到D,使AD⊥AB,若
AD
AB
AC
,則λ-μ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線C:y=ex在點(diǎn)A處的切線l恰好經(jīng)過坐標(biāo)原點(diǎn),則A點(diǎn)的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=
1
2
sin(ωx+
π
6
)與g(x)=3cos(2x+φ)的圖象的對稱軸完全相同,則ω=
 
,φ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若橢圓的中心在原點(diǎn),長軸長為10,一個(gè)焦點(diǎn)坐標(biāo)為(-3,0),則該橢圓的標(biāo)準(zhǔn)方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出三個(gè)命題:①y=tanx是周期函數(shù);②三角函數(shù)是周期函數(shù);③y=tanx是三角函數(shù);則由三段論可以推出的結(jié)論是( 。
A、y=tanx是周期函數(shù)
B、三角函數(shù)是周期函數(shù)
C、y=tanx是三角函數(shù)
D、周期函數(shù)是三角函數(shù)

查看答案和解析>>

同步練習(xí)冊答案