【題目】關(guān)于函數(shù)fx=4sin2x+)(x∈R),有下列命題:

①y=fx)的表達式可改寫為y=4cos2x﹣);

②y=fx)是以為最小正周期的周期函數(shù);

③y=fx)的圖象關(guān)于點對稱;

④y=fx)的圖象關(guān)于直線x=﹣對稱.

其中正確的命題的序號是

【答案】①③

【解析】

試題先根據(jù)誘導(dǎo)公式可判斷,再由最小正周期的求法可判斷,最后根據(jù)正弦函數(shù)的對稱性可判斷,得到答案.

解:∵f x=4sin2x+=4cos=4cos﹣2x+=4cos2x﹣),故正確;

∵T=,故不正確;

x=﹣代入f x=4sin2x+)得到f=4sin+=0,故y="f" x)的圖象關(guān)于點對稱,正確不正確;

故答案為:①③

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在區(qū)間上單調(diào)遞減,則的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在三棱臺中,點上,且,點內(nèi)(含邊界)的一個動點,且有平面平面,則動點的軌跡是( )

A. 平面B. 直線C. 線段,但只含1個端點D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=x|xa|+2xaR).

1)若函數(shù)fx)在R上單調(diào)遞增,求實數(shù)a的取值范圍;

2)若存在實數(shù)a[4,4]使得關(guān)于x的方程fx)﹣tfa)=0恰有三個不相等的實數(shù)根,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)是實數(shù),,

1)若函數(shù)為奇函數(shù),求的值;

2)試用定義證明:對于任意上為單調(diào)遞增函數(shù);

3)若函數(shù)為奇函數(shù),且不等式對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正四面體中,、、分別是的中點,下面四個結(jié)論中不成立的是(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】全集U=R,若集合A={x|2≤x9}B={x|1x≤6}

1)求(CRA∪B;

2)若集合C={x|ax≤2a+7},且AC,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點為,點為橢圓上的動點,若的最大值和最小值分別為.

(I)求橢圓的方程

(Ⅱ)設(shè)不過原點的直線與橢圓 交于兩點,若直線的斜率依次成等比數(shù)列,求面積的最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù).

(1)當時, 恒成立,求的范圍;

(2)若處的切線為,求的值.并證明當)時, .

查看答案和解析>>

同步練習冊答案