【題目】全集U=R,若集合A={x|2≤x9},B={x|1x≤6}

1)求(CRA∪B;

2)若集合C={x|ax≤2a+7},且AC,求實(shí)數(shù)a的取值范圍.

【答案】1)(CRA∪B={x|x≤6x≥9};(21≤a2

【解析】

試題(1)根據(jù)全集與補(bǔ)集、并集的定義,進(jìn)行化簡(jiǎn)、計(jì)算即可;

2)根據(jù)子集的概念,列出不等式組,求出a的取值范圍.

解:(1全集U=R,集合A={x|2≤x9},

RA={x|x2x≥9}

B={x|1x≤6},

CRA∪B={x|x≤6x≥9}

2集合A={x|2≤x9},集合C={x|ax≤2a+7},且AC,

解得1≤a2,

實(shí)數(shù)a的取值范圍是1≤a2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】由實(shí)數(shù)組成的集合A具有如下性質(zhì):若,,那么

1)試問(wèn)集合A能否恰有兩個(gè)元素且?若能,求出所有滿(mǎn)足條件的集合A;若不能,請(qǐng)說(shuō)明理由;

2)是否存在一個(gè)含有元素0的三元素集合A;若存在請(qǐng)求出集合,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司在甲、乙兩地銷(xiāo)售某種品牌車(chē),利潤(rùn)(單位:萬(wàn)元)分別為,其中為銷(xiāo)售量(單位:輛)

1)當(dāng)銷(xiāo)售量在什么范圍時(shí),甲地的銷(xiāo)售利潤(rùn)不低于乙地的銷(xiāo)售利潤(rùn);

2)若該公司在這兩地共銷(xiāo)售輛車(chē),則甲、乙兩地各銷(xiāo)售多少量時(shí)?該公司能獲得利潤(rùn)最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于函數(shù)fx=4sin2x+)(x∈R),有下列命題:

①y=fx)的表達(dá)式可改寫(xiě)為y=4cos2x﹣);

②y=fx)是以為最小正周期的周期函數(shù);

③y=fx)的圖象關(guān)于點(diǎn)對(duì)稱(chēng);

④y=fx)的圖象關(guān)于直線(xiàn)x=﹣對(duì)稱(chēng).

其中正確的命題的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在四棱錐P—ABCD中,底面ABCD是矩形,側(cè)棱PA垂直于底面,E、F分別是AB、PC的中點(diǎn),PAAD.

求證:(1)CD⊥PD;(2)EF⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】候鳥(niǎo)每年都要隨季節(jié)的變化而進(jìn)行大規(guī)模的遷徙,研究某種鳥(niǎo)類(lèi)的專(zhuān)家發(fā)現(xiàn),該種鳥(niǎo)類(lèi)的飛行速度v(單位:m/s)與其耗氧量Q之間的關(guān)系為vablog3 (其中a,b是實(shí)數(shù)).據(jù)統(tǒng)計(jì),該種鳥(niǎo)類(lèi)在靜止時(shí)其耗氧量為30個(gè)單位,而其耗氧量為90個(gè)單位時(shí),其飛行速度為1m/s.

(1)求出ab的值;

(2)若這種鳥(niǎo)類(lèi)為趕路程,飛行的速度不能低于2m/s,則其耗氧量至少要多少個(gè)單位?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列關(guān)于相關(guān)系數(shù)的說(shuō)法不正確的是( )

A. 相關(guān)系數(shù)越大兩個(gè)變量間相關(guān)性越強(qiáng);

B. 相關(guān)系數(shù)的取值范圍為

C. 相關(guān)系數(shù)時(shí)兩個(gè)變量正相關(guān),時(shí)兩個(gè)變量負(fù)相關(guān);

D. 相關(guān)系數(shù)時(shí),樣本點(diǎn)在同一直線(xiàn)上。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知半徑為的球的球面上有三個(gè)點(diǎn),其中任意兩點(diǎn)間的球面距離都等于,且經(jīng)過(guò)這三個(gè)點(diǎn)的小圓周長(zhǎng)為,則______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓經(jīng)過(guò)點(diǎn),離心率為

(1)求的方程;

(2)過(guò)的左焦點(diǎn)且斜率不為的直線(xiàn)相交于,兩點(diǎn),線(xiàn)段的中點(diǎn)為,直線(xiàn)與直線(xiàn)相交于點(diǎn),若為等腰直角三角形,求的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案