在四棱錐PABCD中,側(cè)面PCD⊥底面ABCD,PD⊥CD,底面ABCD是直角梯形,AB∥CD,∠ADC=,AB=AD=PD=1,CD=2.設(shè)Q為側(cè)棱PC上一點(diǎn),=λ,試確定λ的值,使得二面角QBDP的平面角為45°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
如圖,已知面積為1的正三角形ABC三邊的中點(diǎn)分別為D,E,F,從A,B,C,D,E,F六個(gè)點(diǎn)中任取三個(gè)不同的點(diǎn),所構(gòu)成的三角形的面積為X(三點(diǎn)共線時(shí),規(guī)定X=0),求:
(1) P;
(2) E(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,已知AP切圓O于點(diǎn)P,AC交圓O于B,C兩點(diǎn),點(diǎn)M是BC的中點(diǎn),求證:∠OAM+∠APM=.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在正方體ABCDA1B1C1D1中,求二面角A1BDC1的平面角的余弦值.
結(jié)合空間向量判斷或證明線面位置關(guān)系
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,已知三棱柱ABCA1B1C1中,AB⊥AC,AB=2,AC=4,AA1=3,點(diǎn)D是BC的中點(diǎn).
(1) 求直線DB1與平面A1C1D所成角的正弦值;
(2) 求二面角B1A1DC1的平面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系xOy中,已知橢圓C:+=1.
(1) 若橢圓C的焦點(diǎn)在x軸上,求實(shí)數(shù)m的取值范圍;
(2) 已知m=6.
①若P是橢圓C上的動(dòng)點(diǎn),點(diǎn)M的坐標(biāo)為(1,0),求PM的最小值及對(duì)應(yīng)的點(diǎn)P的坐標(biāo);
②過橢圓C的右焦點(diǎn)F作與坐標(biāo)軸不垂直的直線,交橢圓C于A,B兩點(diǎn),線段AB的垂直平分線l交x軸于點(diǎn)N,求證:是定值;并求出這個(gè)定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com