【題目】已知函數(shù),

(1)若,,求的單凋區(qū)間;

(2)若函數(shù)是函數(shù)的圖像的切線,求的最小值;

(3)求證:

【答案】(1) 的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為區(qū)間為;(2) ;(3) 見解析.

【解析】試題分析: (1)先求函數(shù)導(dǎo)數(shù),再在定義域內(nèi)求導(dǎo)函數(shù)零點,列表分析導(dǎo)函數(shù)符號變化規(guī)律,確定單調(diào)區(qū)間,(2)先設(shè)切點,根據(jù)導(dǎo)數(shù)幾何意義將 表示成 的函數(shù): ,再利用導(dǎo)數(shù)求函數(shù)最小值,(3)利用結(jié)論,進行放縮 ,轉(zhuǎn)化證明,這可以構(gòu)造差函數(shù),利用導(dǎo)數(shù)可得其最大值為.

試題解析: (1)時, ,

,,

,解,

的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為區(qū)間為

(2)設(shè)切點坐標為設(shè)切點坐標為

,

切線斜率,又,

,∴

,

,

,解,

上遞減,在上遞增.

,∴的最小值為

(3)法一:令,

由(1)知,∴.

,∴

,(兩個等號不會同時成立)

法二:令,

顯然上遞增,

上有唯一實根,且 ,

上遞減,在上遞增,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若關(guān)于x的不等式的解集為,求的值;

2)記不等式的解集為A,時,恒有成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了解學(xué)生一周的課外閱讀情況,隨機抽取了100名學(xué)生對其進行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的一周學(xué)生閱讀時間(單位:分鐘)的頻率分布直方圖,且將一周課外閱讀時間不低于200分鐘的學(xué)生稱為“閱讀愛好”,低于200分鐘的學(xué)生稱為“非閱讀愛好”.

1)根據(jù)已知條件完成下面列聯(lián)表,并據(jù)此判斷是否有97.5%的把握認為“閱讀愛好”與性別有關(guān)?

非閱讀愛好

閱讀愛好

合計

男女

50

合計

14

男女

2)將頻率視為概率,從該校學(xué)生中用隨機抽樣的方法抽取4人,記被抽取的四人中“閱讀愛好”的人數(shù)為,若每次抽取的結(jié)果是相互獨立的,求的分布列和數(shù)學(xué)期望.

附:

0.10

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了讓貧困地區(qū)的孩子們過一個溫暖的冬天,某校陽光志愿者社團組織“這個冬天不再冷”冬衣募捐活動,共有50名志愿者參與.志愿者的工作內(nèi)容有兩項:①到各班做宣傳,倡議同學(xué)們積極捐獻冬衣;②整理、打包募捐上來的衣物.每位志愿者根據(jù)自身實際情況,只參與其中的某一項工作.相關(guān)統(tǒng)計數(shù)據(jù)如下表所示:

(1)如果用分層抽樣的方法從參與兩項工作的志愿者中抽取5人,再從這5人中選2人,那么“至少有1人是參與班級宣傳的志愿者”的概率是多少?

(2)若參與班級宣傳的志愿者中有12名男生,8名女生,從中選出2名志愿者,用表示所選志愿者中的女生人數(shù),寫出隨機變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的短軸端點為,,點是橢圓上的動點,且不與,重合,點滿足,.

(Ⅰ)求動點的軌跡方程;

(Ⅱ)求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,底面是等腰梯形,,點的中點,以為邊作正方形,且平面平面.

1)證明:平面平面.

2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為矩形, , 的中點。

1)證明: 平面;

2)設(shè), ,三棱錐的體積 ,求A到平面PBC的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的最大值;

2)若函數(shù)有相同極值點.

求實數(shù)的值;

若對于為自然對數(shù)的底數(shù)),不等式恒成立,

求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面外ABC的一點P,APAB、AC兩兩互相垂直,過AC的中點DED⊥面ABC,且ED=1,PA=2,AC=2,連接BP,BE,多面體BPADE的體積是;

1)畫出面PBE與面ABC的交線,說明理由;

2)求面PBE與面ABC所成的銳二面角的大小.

查看答案和解析>>

同步練習(xí)冊答案