【題目】已知橢圓:的短軸端點為,,點是橢圓上的動點,且不與,重合,點滿足,.
(Ⅰ)求動點的軌跡方程;
(Ⅱ)求四邊形面積的最大值.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: (a>b>0)的一個頂點為A(2,0),離心率為.直線y=k(x-1)與橢圓C交于不同的兩點M,N.
(1)求橢圓C的方程;
(2)當△AMN的面積為時,求k的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)甲,乙兩個研發(fā)小組,他們研發(fā)新產(chǎn)品成功的概率分別為和,現(xiàn)安排甲組研發(fā)新產(chǎn)品,乙組研發(fā)新產(chǎn)品.設甲,乙兩組的研發(fā)是相互獨立的.
(1)求至少有一種新產(chǎn)品研發(fā)成功的概率;
(2)若新產(chǎn)品研發(fā)成功,預計企業(yè)可獲得萬元,若新產(chǎn)品研發(fā)成功,預計企業(yè)可獲得利潤萬元,求該企業(yè)可獲得利潤的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,曲線由部分橢圓:和部分拋物線:連接而成,與的公共點為,,其中所在橢圓的離心率為.
(Ⅰ)求,的值;
(Ⅱ)過點的直線與,分別交于點,(,,,中任意兩點均不重合),若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“科技引領,布局未來”科技研發(fā)是企業(yè)發(fā)展的驅(qū)動力量。年,某企業(yè)連續(xù)年累計研發(fā)投入搭億元,我們將研發(fā)投入與經(jīng)營投入的比值記為研發(fā)投入占營收比,這年間的研發(fā)投入(單位:十億元)用右圖中的折現(xiàn)圖表示,根據(jù)折線圖和條形圖,下列結論錯誤的使( )
A. 年至年研發(fā)投入占營收比增量相比年至年增量大
B. 年至年研發(fā)投入增量相比年至年增量小
C. 該企業(yè)連續(xù)年研發(fā)投入逐年增加
D. 該企業(yè)來連續(xù)年來研發(fā)投入占營收比逐年增加
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線的傾斜角為,且經(jīng)過點.以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,直線,從原點O作射線交于點M,點N為射線OM上的點,滿足,記點N的軌跡為曲線C.
(Ⅰ)求出直線的參數(shù)方程和曲線C的直角坐標方程;
(Ⅱ)設直線與曲線C交于P,Q兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】社區(qū)服務是高中學生社會實踐活動的一個重要內(nèi)容,漢中某中學隨機抽取了100名男生、100名女生,了解他們一年參加社區(qū)服務的時間,按,,,,(單位:小時)進行統(tǒng)計,得出男生參加社區(qū)服務時間的頻率分布表和女生參加社區(qū)服務時間的頻率分布直方圖.
(1)完善男生參加社區(qū)服務時間的頻率分布表和女生參加社區(qū)服務時間的頻率分布直方圖.
抽取的100名男生參加社區(qū)服務時間的頻率分布表
社區(qū)服務時間 | 人數(shù) | 頻率 |
0.05 | ||
20 | ||
0.35 | ||
30 | ||
合計 | 100 | 1 |
學生社區(qū)服務時間合格與性別的列聯(lián)表
不合格的人數(shù) | 合格的人數(shù) | |
男 | ||
女 |
(2)按高中綜合素質(zhì)評價的要求,高中學生每年參加社區(qū)服務的時間不少于20個小時才為合格,根據(jù)上面的統(tǒng)計圖表,完成抽取的這200名學生參加社區(qū)服務時間合格與性別的列聯(lián)表,并判斷是否有以上的把握認為參加社區(qū)服務時間達到合格程度與性別有關,并說明理由.
(3)用以上這200名學生參加社區(qū)服務的時間估計全市9萬名高中學生參加社區(qū)服務時間的情況,并以頻率作為概率.
(i)求全市高中學生參加社區(qū)服務時間不少于30個小時的人數(shù).
(ⅱ)對我市高中生參加社區(qū)服務的情況進行評價.
參考公式
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.002 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(,其)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某個公園有個池塘,其形狀為直角△ABC,∠C=90°,AB=2百米,BC=1百米.
(1)現(xiàn)在準備養(yǎng)一批供游客觀賞的魚,分別在AB、BC、CA上取點D,E,F,如圖(1),使得EF‖AB,EF⊥ED,在△DEF喂食,求△DEF 面積S△DEF的最大值;
(2)現(xiàn)在準備新建造一個荷塘,分別在AB,BC,CA上取點D,E,F,如圖(2),建造△DEF
連廊(不考慮寬度)供游客休憩,且使△DEF為正三角形,求△DEF邊長的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com