(本小題滿分12分)
如圖,在平行四邊形中,,將它們沿對角線折起,折后的點(diǎn)變?yōu)?img src="http://thumb.zyjl.cn/pic5/tikupic/cd/4/dqotb1.png" style="vertical-align:middle;" />,且
 
(Ⅰ)求證:平面平面
(Ⅱ)為線段上的一個動點(diǎn),當(dāng)線段的長為多少時,與平面所成的角為

(Ⅰ)
 ∴平面平面(Ⅱ)1

解析試題分析:(Ⅰ)
,


∴平面平面
(Ⅱ)在平面過點(diǎn)B作直線,分別直線為x,y,z建立空間直角坐標(biāo)系B-xyz

則A(0,0,1),C1(1,,0),D(0, ,0)

設(shè),則 ∴
是平面BC1D的一個法向量
依題意得,即
解得,即時,與平面所成的角為
考點(diǎn):面面垂直的判定及線面角的求解
點(diǎn)評:向量法在求解點(diǎn)的位置的問題上比其他方法要簡單實(shí)用,通過數(shù)據(jù)直接計算出點(diǎn)的位置

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)在直三棱柱(側(cè)棱垂直底面)中,,,且異面直線所成的角等于

(Ⅰ)求棱柱的高;
(Ⅱ)求與平面所成的角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱錐S-ABCD 的底面是正方形,每條側(cè)棱的長都是底面邊長的倍,P為側(cè)棱SD上的點(diǎn).

(Ⅰ)求證:AC⊥SD;
(Ⅱ)若SD⊥平面PAC,則側(cè)棱SC上是否存在一點(diǎn)E,使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
如圖所示,四棱錐中,底面為正方形,平面,,,,分別為、、的中點(diǎn).

(1)求證:;
(2)求平面EFG與平面ABCD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

圖形P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=AB,Q是PC中點(diǎn).AC,BD交于O點(diǎn).

(1)二面角Q-BD-C的大。
(2)求二面角B-QD-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分為10分)
在四面體ABCD中作截面PQR,若PQ,CB的延長線交于M;RQ,DB的延長線交于N;RP,DC的延長線交于K,求證:M、N、K三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四面體ABCD中,O、E分別是BD、BC的中點(diǎn),

(I)求證:平面BCD;
(II)求異面直線AB與CD所成角的余弦值;
(III)求點(diǎn)E到平面ACD的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示:一吊燈的下圓環(huán)直徑為4m,圓心為O,通過細(xì)繩懸掛在天花板上,圓環(huán)呈水平狀態(tài),并且與天花板的距離(即)為2m,在圓環(huán)上設(shè)置三個等分點(diǎn)A1,A2,A3。點(diǎn)C為上一點(diǎn)(不包含端點(diǎn)O、B),同時點(diǎn)C與點(diǎn)A1,A2,A3,B均用細(xì)繩相連接,且細(xì)繩CA1,CA2,CA3的長度相等。設(shè)細(xì)繩的總長為,
(1)設(shè)∠CA1O =(rad),將y表示成的函數(shù)關(guān)系式;
(2)請你設(shè)計,當(dāng)角正弦值的大小是多少時,細(xì)繩總長最小,并指明此時 BC應(yīng)為多長。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在四棱錐V-ABCD中,底面ABCD是正方形,側(cè)面VAD是正三角形,平面VAD⊥底面ABCD.

(Ⅰ)證明AB⊥平面VAD;
(Ⅱ)求面VAD與面VDB所成二面角的大小。

查看答案和解析>>

同步練習(xí)冊答案