【題目】已知正方形邊長(zhǎng)為,若在正方形邊上恰有個(gè)不同的點(diǎn),使,則的取值范圍為_____________.

【答案】

【解析】

建立坐標(biāo)系,逐段分析的取值范圍及對(duì)應(yīng)的解得答案.

AB所在直線為x軸,以AD所在直線為y軸建立平面直角坐標(biāo)系如圖:

F02),E8,4

1)若PAB上,設(shè)Px,0),0x8

(﹣x,2),8x,4

x28x+8

x[0,8],∴﹣88

∴當(dāng)λ=﹣8時(shí)有一解,當(dāng)﹣8λ8時(shí)有兩解;

2)若PAD上,設(shè)P0y),0y8,

0,2y),8,4y

2y)(4y)=y26y+8

0y8,∴﹣124

∴當(dāng)λ=﹣18λ24時(shí)有唯一解;當(dāng)﹣1λ8時(shí)有兩解

3)若PDC上,設(shè)Px,8),0x8

(﹣x,﹣6),8x,﹣4),

x28x+24,

0x8,∴824,

∴當(dāng)λ8時(shí)有一解,當(dāng)8λ24時(shí)有兩解.

4)若PBC上,設(shè)P8,y),0y8,

(﹣82y),0,4y),

2y)(4y)=y26y+8

0y8,∴﹣124,

∴當(dāng)λ=﹣18λ24時(shí)有一解,當(dāng)﹣1λ8時(shí)有兩解.

綜上,在正方形ABCD的四條邊上有且只有6個(gè)不同的點(diǎn)P,使得λ成立,那么λ的取值范圍是(﹣18

故答案為:(﹣1,8

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著智能手機(jī)的普及,使用手機(jī)上網(wǎng)成為了人們?nèi)粘I畹囊徊糠郑芏嘞M(fèi)者對(duì)手機(jī)流量的需求越來(lái)越大.長(zhǎng)沙某通信公司為了更好地滿足消費(fèi)者對(duì)流量的需求,準(zhǔn)備推出一款流量包.該通信公司選了5個(gè)城市(總?cè)藬?shù)、經(jīng)濟(jì)發(fā)展情況、消費(fèi)能力等方面比較接近)采用不同的定價(jià)方案作為試點(diǎn),經(jīng)過(guò)一個(gè)月的統(tǒng)計(jì),發(fā)現(xiàn)該流量包的定價(jià):(單位:元/月)和購(gòu)買人數(shù)(單位:萬(wàn)人)的關(guān)系如表:

(1)根據(jù)表中的數(shù)據(jù),運(yùn)用相關(guān)系數(shù)進(jìn)行分析說(shuō)明,是否可以用線性回歸模型擬合的關(guān)系?并指出是正相關(guān)還是負(fù)相關(guān);

(2)①求出關(guān)于的回歸方程;

②若該通信公司在一個(gè)類似于試點(diǎn)的城市中將這款流量包的價(jià)格定位25元/ 月,請(qǐng)用所求回歸方程預(yù)測(cè)長(zhǎng)沙市一個(gè)月內(nèi)購(gòu)買該流量包的人數(shù)能否超過(guò)20 萬(wàn)人.

參考數(shù)據(jù):,.

參考公式:相關(guān)系數(shù),回歸直線方程,

其中,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下四個(gè)命題中正確的是(

A.空間的任何一個(gè)向量都可用其他三個(gè)向量表示

B.為空間向量的一組基底,則構(gòu)成空間向量的另一組基底

C.為直角三角形的充要條件是

D.任何三個(gè)不共線的向量都可構(gòu)成空間向量的一個(gè)基底

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下5條表述中,橫線上填A代表充分非必要條件,填B代表必要非充分條件,填C代表充要條件,填D代表既非充分也非必要條件,請(qǐng)將相應(yīng)的字母填入下列橫線上.

1)若,則的等比中項(xiàng)_______.

2數(shù)列為常數(shù)列數(shù)列既是等差數(shù)列又是等比數(shù)列_______.

3)若是等比數(shù)列,則為遞減數(shù)列_______.

4)若是公比為的等比數(shù)列,則是遞減數(shù)列_______.

5)記數(shù)列的前項(xiàng)和為,則數(shù)列為遞增數(shù)列數(shù)列的各項(xiàng)均為大于零_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)神舟十一號(hào)載人飛船在酒泉衛(wèi)星發(fā)射中心成功發(fā)射,引起全國(guó)轟動(dòng).開學(xué)后,某校高二年級(jí)班主任對(duì)該班進(jìn)行了一次調(diào)查,發(fā)現(xiàn)全班60名同學(xué)中,對(duì)此事關(guān)注的占,他們?cè)诒緦W(xué)期期末考試中的物理成績(jī)(滿分100分)如下面的頻率分布直方圖:

(1)求“對(duì)此事關(guān)注”的同學(xué)的物理期末平均分(以各區(qū)間的中點(diǎn)代表該區(qū)間的均值).

(2)若物理成績(jī)不低于80分的為優(yōu)秀,請(qǐng)以是否優(yōu)秀為分類變量,

①補(bǔ)充下面的列聯(lián)表:

物理成績(jī)優(yōu)秀

物理成績(jī)不優(yōu)秀

合計(jì)

對(duì)此事關(guān)注

對(duì)此事不關(guān)注

合計(jì)

②是否有以上的把握認(rèn)為“對(duì)此事是否關(guān)注”與物理期末成績(jī)是否優(yōu)秀有關(guān)系?

參考公式: ,其中.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“科技引領(lǐng),布局未來(lái)”科技研發(fā)是企業(yè)發(fā)展的驅(qū)動(dòng)力量.2007年至2018年,某企業(yè)連續(xù)12年累計(jì)研發(fā)投入達(dá)4100億元,我們將研發(fā)投入與經(jīng)營(yíng)收入的比值記為研發(fā)投入占營(yíng)收比.這12年間的研發(fā)投入(單位:十億元)用圖中的條形圖表示,研發(fā)投入占營(yíng)收比用圖中的折線圖表示.

根據(jù)折線圖和條形圖,下列結(jié)論錯(cuò)誤的是( 。

A. 2012﹣2013 年研發(fā)投入占營(yíng)收比增量相比 2017﹣2018 年增量大

B. 該企業(yè)連續(xù) 12 年研發(fā)投入逐年增加

C. 2015﹣2016 年研發(fā)投入增值最大

D. 該企業(yè)連續(xù) 12 年研發(fā)投入占營(yíng)收比逐年增加

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,底面是邊長(zhǎng)為4的等邊三角形,,的中點(diǎn).

1)證明:平面.

2)若是等邊三角形,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2013年華人數(shù)學(xué)家張益唐證明了孿生素?cái)?shù)猜想的一個(gè)弱化形式。孿生素?cái)?shù)猜想是希爾伯特在1900年提出的23個(gè)問(wèn)題之一,可以這樣描述:存在無(wú)窮多個(gè)素?cái)?shù)p,使得p+2是素?cái)?shù),素?cái)?shù)對(duì)(p,p+2)稱為孿生素?cái)?shù).在不超過(guò)30的素?cái)?shù)中,隨機(jī)選取兩個(gè)不同的數(shù),其中能夠組成孿生素?cái)?shù)的概率是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在四棱柱中,側(cè)棱底面,,,為棱的中點(diǎn).

1)證明:;

2)求二面角的正弦值;

3)設(shè)點(diǎn)在線段上,且直線與平面所成角的正弦值是,求線段的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案