已知命題p:?x0∈R,x02+ax0+a<0.若?p是真命題,則實(shí)數(shù)a的取值范圍是( 。
A、[0,4]
B、(0,4)
C、(-∞,0)∪(4,+∞)
D、(-∞,0]∪[4,+∞)
考點(diǎn):特稱命題
專題:簡易邏輯
分析:已知若命題p:?x0∈R,x02+ax0+a<0.?p是真命題,說明方程x2+ax+a≥0恒成立,根據(jù)判別式與根的關(guān)系進(jìn)行求解;
解答: 解:∵若命題p:?x0∈R,x02+ax0+a<0.?p是真命題,說明方程x2+ax+a≥0恒成立,
∴△=a2-4a≤0,
解得0≤a≤4,
故選:A.
點(diǎn)評:此題主要考查特稱命題真假的判斷以及一元二次方程根與判別式的關(guān)系,是一道基礎(chǔ)題;
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(
1
2
)x,(x≤0)
2f(x-1),(x>0)
,若方程f(x)=3x+a有且只有一個(gè)解,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,-
π
2
<φ<
π
2
)在一個(gè)周期內(nèi)的部分圖象如圖所示.則此函數(shù)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,是奇函數(shù),又在定義域內(nèi)為減函數(shù)的是(  )
A、y=(
1
2
x
B、y=
1
x
C、y=-x3
D、y=x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩點(diǎn)A(-1,0),B(1,3),向量
a
=(2k-1,2),若
AB
a
,則實(shí)數(shù)k的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某程序框圖如圖所示,則該程序運(yùn)行后輸出的值是
 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

溶液的酸堿度是通過PH值刻畫的,已知某溶液的PH值等于-lg[H+],其中[H+]表示該溶液中氫離子的濃度,若某溶液的氫離子的濃度為10-3mol/L,則該溶液的PH值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是遞增的等比數(shù)列a2=2,a4-
5
2
a3=-2,則此數(shù)列的公比q為( 。
A、3
B、4
C、
1
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)偶函數(shù)f(x)=
3
sin(2x+φ)-cos(2x+φ)(|φ|<
π
2
),則( 。
A、y=f(x)的對稱中心為(
2
,0)(k∈Z),且在(0,
π
2
)上為減函數(shù)
B、y=f(x)的對稱中心為(
2
+
π
4
,0)(k∈Z),且在(0,
π
4
)上為減函數(shù)
C、y=f(x)的對稱中心為(
2
,0)(k∈Z),且在(0,
π
4
)上為增函數(shù)
D、y=f(x)的對稱中心為(
2
+
π
4
,0)(k∈Z),且在(0,
π
2
)上為增函數(shù)

查看答案和解析>>

同步練習(xí)冊答案