精英家教網 > 高中數學 > 題目詳情
雙曲線中心在原點,坐標軸為對稱軸,與圓x2+y2=17交于A(4,-1).若圓在點A的切線與雙曲線的一條漸近線平行,求雙曲線的方程.
提示:先求圓的切線方程,進而得到雙曲線的漸近線方程,再用待定系數法求雙曲線的方程.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知A(-2,0),B(2,0),動點P與A、B兩點連線的斜率分別為,且滿足·="t" (t≠0且t≠-1). 當t<0時,曲線C的兩焦點為F1,F2,若曲線C上存在點Q使得∠F1QF2=120O,求t的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知A,B是拋物線上的兩個動點,為坐標原點,非零向量滿足
(Ⅰ)求證:直線經過一定點;
(Ⅱ)當的中點到直線的距離的最小值為時,求的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題


查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知直線相交于A、B兩點,M是線段AB上的一點,,且點M在直線上.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若橢圓的焦點關于直線的對稱點在單位圓上,求橢圓的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

方程所表示的曲線是 ( )
A.焦點在x軸上的橢圓B.焦點在y軸上的橢圓
C.焦點在x軸上的雙曲線D.焦點在 y軸上的雙曲線

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若拋物線的焦點與橢圓的右焦點重合,則的值為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知拋物線,直線兩點,是線段的中點,過軸的垂線交于點.(1)證明:拋物線在點處的切線與平行;(2)是否存在實數使NANB,若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知,點滿足,記點的軌跡為.
(Ⅰ)求軌跡的方程;(Ⅱ)若直線過點且與軌跡交于、兩點. (i)設點,問:是否存在實數,使得直線繞點無論怎樣轉動,都有成立?若存在,求出實數的值;若不存在,請說明理由.(ii)過、作直線的垂線、,垂足分別為、,記
,求的取值范圍.

查看答案和解析>>

同步練習冊答案