已知拋物線,直線兩點,是線段的中點,過軸的垂線交于點.(1)證明:拋物線在點處的切線與平行;(2)是否存在實數(shù)使NANB,若存在,求的值;若不存在,說明理由.
(Ⅰ) 略  (Ⅱ)   
法一:(Ⅰ)如圖,設,,把代入,由韋達定理得,,
,點的坐標為
設拋物線在點處的切線的方程為,
代入上式得直線與拋物線相切,
,.即
(Ⅱ)假設存在實數(shù),使,則,又的中點,
.由(Ⅰ)知
軸,

,解得.即存在,使
解法二:(Ⅰ)如圖,設,把代入
.由韋達定理得
點的坐標為,,
拋物線在點處的切線的斜率為,
(Ⅱ)假設存在實數(shù),使
由(Ⅰ)知,則





,,解得.即存在,使
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題


查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

雙曲線中心在原點,坐標軸為對稱軸,與圓x2+y2=17交于A(4,-1).若圓在點A的切線與雙曲線的一條漸近線平行,求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)離心率為的橢圓上有一點到橢圓兩焦點的距離和為.以橢圓的右焦點為圓心,短軸長為直徑的圓有切線為切點),且點滿足為橢圓的上頂點)。(I)求橢圓的方程;(II)求點所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

直線與雙曲線的左支交于兩點,另一直線過點的中點,求直線軸上的截距的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設向量為直角坐標平面內x軸,y軸正方向上的單位向量.若向量,,且.(1)求滿足上述條件的點的軌跡方程;(2)設,問是否存在常數(shù),使得恒成立?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)平面直角坐標系中,為坐標原點,給定兩點,點滿足   ,其中,且.  (1)求點的軌跡方程;(2)設點的軌跡與雙曲線交于兩點,且以為直徑的圓過原點,求證:為定值;(3)在(2)的條件下,若雙曲線的離心率不大于,求雙曲線實軸長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分15分)
已知曲線C上的動點滿足到點的距離比到直線的距離小1.
求曲線C的方程;過點F的直線l與曲線C交于A、B兩點.(。┻^A、B兩點分別作拋物線的切線,設其交點為M,證明;(ⅱ)是否在y軸上存在定點Q,使得無論AB怎樣運動,都有?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,動點M到直線x=-1的距離等于它到圓F:(x-2)2+y2=1的點的最小距離.
(1)求點M的軌跡方程;
(2)已知過點F的直線與點M的軌跡交于A,B兩點,且|AF|=8,求|BF|的長.

查看答案和解析>>

同步練習冊答案