如圖,直線y=x-2與拋物線y2=2x相交于點A,B,求證:OA⊥OB.
科目:高中數學 來源:中學教材標準學案 數學 高二上冊 題型:044
如圖,直線y=x與拋物線y=x2-4交于A、B兩點,線段AB的垂直平分線與直線y=-5交于Q點.
(1)求點Q的坐標;
(2)當P為拋物線上位于線段AB下方(含A、B)的動點時,求△OPQ面積的最大值.
查看答案和解析>>
科目:高中數學 來源:福建省永安一中2011-2012學年高二上學期期中考試數學理科試題 題型:044
定義:由橢圓的兩個焦點和短軸的一個頂點組成的三角形稱為該橢圓的“特征三角形”.如果兩個橢圓的“特征三角形”是相似的,則稱這兩個橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比.已知橢圓.
(1)若橢圓,判斷C2與C1是否相似?如果相似,求出C2與C1的相似比;如果不相似,請說明理由;
(2)寫出與橢圓C1相似且短半軸長為b的橢圓Cb的方程;若在橢圓Cb上存在兩點M、N關于直線y=x+1對稱,求實數b的取值范圍?
(3)如圖:直線l與兩個“相似橢圓”和分別交于點A,B和點C,D,證明:|AC|=|BD|
查看答案和解析>>
科目:高中數學 來源:上海市南匯中學2012屆高三第一次考試數學試題 題型:044
定義:由橢圓的兩個焦點和短軸的一個頂點組成的三角形稱為該橢圓的“特征三角形”.如果兩個橢圓的“特征三角形”是相似的,則稱這兩個橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比.已知橢圓
(1)若橢圓判斷C2與C1是否相似?如果相似,求出C2與C1的相似比;如果不相似,請說明理由;
(2)寫出與橢圓C1相似且短軸半軸長為b的焦點在x軸上的橢圓Cb的標準方程;若在橢圓Cb上存在兩點M、N關于直線y=x+1對稱,求實數b的取值范圍?
(3)如圖:直線y=x與兩個“相似橢圓”
分別交于點A,B和點C,D,試在橢圓M和橢圓Mλ上分別作出點E和點F(非橢圓頂點),使△CDF和△ABE組成以λ為相似的兩個相似三角形,寫出具體作法.(不必證明)
查看答案和解析>>
科目:高中數學 來源:2013-2014學年湖北武漢市高三2月調研測試理科數學試卷(解析版) 題型:解答題
如圖,矩形ABCD中,|AB|=2,|BC|=2.E,F,G,H分別是矩形四條邊的中點,分別以HF,EG所在的直線為x軸,y軸建立平面直角坐標系,已知=λ,=λ,其中0<λ<1.
(1)求證:直線ER與GR′的交點M在橢圓Γ:+y2=1上;
(2)若點N是直線l:y=x+2上且不在坐標軸上的任意一點,F1、F2分別為橢圓Γ的左、右焦點,直線NF1和NF2與橢圓Γ的交點分別為P、Q和S、T.是否存在點N,使得直線OP、OQ、OS、OT的斜率kOP、kOQ、kOS、kOT滿足kOP+kOQ+kOS+kOT=0?若存在,求出點N的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com