【題目】已知函數(shù),為的導(dǎo)函數(shù).
(Ⅰ)當(dāng)時,
(i)求曲線在點處的切線方程;
(ii)求函數(shù)的單調(diào)區(qū)間和極值;
(Ⅱ)當(dāng)時,求證:對任意的,且,有.
【答案】(Ⅰ)(i);(ii)的極小值為,無極大值;(Ⅱ)證明見解析.
【解析】
(Ⅰ) (i)首先求得導(dǎo)函數(shù)的解析式,然后結(jié)合導(dǎo)數(shù)的幾何意義求解切線方程即可;
(ii)首先求得的解析式,然后利用導(dǎo)函數(shù)與原函數(shù)的關(guān)系討論函數(shù)的單調(diào)性和函數(shù)的極值即可;
(Ⅱ)首先確定導(dǎo)函數(shù)的解析式,然后令,將原問題轉(zhuǎn)化為與有關(guān)的函數(shù),然后構(gòu)造新函數(shù),利用新函數(shù)的性質(zhì)即可證得題中的結(jié)論.
(Ⅰ) (i) 當(dāng)k=6時,,.可得,,
所以曲線在點處的切線方程為,即.
(ii) 依題意,.
從而可得,
整理可得:,
令,解得.
當(dāng)x變化時,的變化情況如下表:
單調(diào)遞減 | 極小值 | 單調(diào)遞增 |
所以,函數(shù)g(x)的單調(diào)遞減區(qū)間為(0,1),單調(diào)遞增區(qū)間為(1,+∞);
g(x)的極小值為g(1)=1,無極大值.
(Ⅱ)證明:由,得.
對任意的,且,令,則
. ①
令.
當(dāng)x>1時,,
由此可得在單調(diào)遞增,所以當(dāng)t>1時,,即.
因為,,,
所以
. ②
由(Ⅰ)(ii)可知,當(dāng)時,,即,
故 ③
由①②③可得.
所以,當(dāng)時,任意的,且,有
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)在區(qū)間上存在兩個不同零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在①;②;③,這三個條件中任選一個,補充在下面問題中,然后解答補充完整的題目.
在△中,內(nèi)角A,B,C所對的邊分別為.且滿足_________.
(1)求;
(2)已知,△的外接圓半徑為,求△的邊AB上的高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
Ⅰ若函數(shù)的最大值為3,求實數(shù)的值;
Ⅱ若當(dāng)時,恒成立,求實數(shù)的取值范圍;
Ⅲ若,是函數(shù)的兩個零點,且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為加強對銷售員的考核與管理,從銷售部門隨機抽取了2019年度某一銷售小組的月均銷售額,該小組各組員2019年度的月均銷售額(單位:萬元)分別為:3.35,3.35,3.38,3.41,3.43,3.44,3.46,3.48,3.51,3.54,3.56,3.56,3.57,3.59,3.60,3.64,3.64,3.67,3.70,3.70.
(Ⅰ)根據(jù)公司人力資源部門的要求,若月均銷售額超過3.52萬元的組員不低于全組人數(shù)的,則對該銷售小組給予獎勵,否則不予獎勵.試判斷該公司是否需要對抽取的銷售小組發(fā)放獎勵;
(Ⅱ)在該銷售小組中,已知月均銷售額最高的5名銷售員中有1名的月均銷售額造假.為找出月均銷售額造假的組員,現(xiàn)決定請專業(yè)機構(gòu)對這5名銷售員的月均銷售額逐一進行審核,直到能確定出造假組員為止.設(shè)審核次數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】質(zhì)量是企業(yè)的生命線,某企業(yè)在一個批次產(chǎn)品中隨機抽檢件,并按質(zhì)量指標(biāo)值進行統(tǒng)計分析,得到表格如表:
質(zhì)量指標(biāo)值 | 等級 | 頻數(shù) | 頻率 |
三等品 | 10 | 0.1 | |
二等品 | 30 | ||
一等品 | 0.4 | ||
特等品 | 20 | 0.2 | |
合計 | 1 |
(1)求,,;
(2)從質(zhì)量指標(biāo)值在的產(chǎn)品中,按照等級分層抽樣抽取6件,再從這6件中隨機抽取2件,求至少有1件特等品被抽到的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)a=-2時,求函數(shù)f(x)的極值;
(2)若ln[e(x+1)]≥2- f(-x)對任意的x∈[0,+∞)成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)對函數(shù)進行研究后,得出以下結(jié)論,其中正確的有( )
A.函數(shù)的圖象關(guān)于原點對稱
B.對定義域中的任意實數(shù)的值,恒有成立
C.函數(shù)的圖象與軸有無窮多個交點,且每相鄰兩交點間距離相等
D.對任意常數(shù),存在常數(shù),使函數(shù)在上單調(diào)遞減,且
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com