【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若函數(shù)在區(qū)間上存在兩個不同零點,求實數(shù)的取值范圍.

【答案】(1)答案見解析;(2).

【解析】

試題分析:(1)先求導數(shù),再根據(jù)a討論導函數(shù)零點,根據(jù)導函數(shù)零點情況討論導函數(shù)符號,根據(jù)導函數(shù)符號確定函數(shù)單調(diào)性,(2)先分離,再利用導數(shù)研究函數(shù)單調(diào)性,最后根據(jù)圖像確定存在兩個不同零點的條件,解對應不等式得實數(shù)的取值范圍.

試題解析:(1)∵

①若,,此時函數(shù)在上單調(diào)遞增;

②若,

,此時函數(shù)在上單調(diào)遞減;

,此時函數(shù)在上單調(diào)遞增;

(2)由題意知:在區(qū)間上有兩個不同實數(shù)解

即函數(shù)圖像與函數(shù)圖像有兩個不同的交點,

因為

所以當,函數(shù)在上單調(diào)遞減

,函數(shù)在上單調(diào)遞增;

,,,

要使函數(shù)圖像與函數(shù)圖像有兩個不同的交點

所以的取值范圍為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】小趙和小王約定在早上之間到某公交站搭乘公交車去上學,已知在這段時間內(nèi),共有班公交車到達該站,到站的時間分別為,,如果他們約定見車就搭乘,則小趙和小王恰好能搭乘同一班公交車去上學的概率為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定點S( -2,0) ,T(2,0),動點P為平面上一個動點,且直線SPTP的斜率之積為.

1)求動點P的軌跡E的方程;

2)設點B為軌跡Ey軸正半軸的交點,是否存在直線l,使得l交軌跡EMN兩點,且F(1,0)恰是△BMN的垂心?若存在,求l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一帶一路絲綢之路經(jīng)濟帶“21世紀海上絲綢之路的簡稱,旨在積極發(fā)展我國與沿線國家經(jīng)濟合作關(guān)系,共同打造政治互信、經(jīng)濟融合、文化包容的命運共同體.2013年以來,一帶一路建設成果顯著下圖是2013-2017年,我國對一帶一路沿線國家進出口情況統(tǒng)計圖,下列描述正確的是( .

A.這五年,2013年出口額最少

B.這五年,出口總額比進口總額多

C.這五年,出口增速前四年逐年下降

D.這五年,2017年進口增速最快

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若,曲線在點處的切線與直線平行,求的值;

2)若,且函數(shù)的值域為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】著名數(shù)學家華羅庚先生曾說過:“數(shù)缺形時少直觀,形缺數(shù)時難入微數(shù)形結(jié)合百般好,隔裂分家萬事休.”在數(shù)學的學習和研究中,我們經(jīng)常用函數(shù)的圖象來研究函數(shù)的性質(zhì),也經(jīng)常用函數(shù)的解析式來琢磨函數(shù)的圖象的特征,如某體育品牌的LOGO,可抽象為如圖所示的軸對稱的優(yōu)美曲線,下列函數(shù)中,其圖象大致可“完美”局部表達這條曲線的函數(shù)是( )

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知橢圓,其右焦點F到其右準線的距離為1,離心率為,A,B分別為橢圓的上、下頂點,過點F且不與x軸重合的直線l與橢圓交于CD兩點,與y軸交于點P,直線交于點Q.

1)求橢圓的標準方程;

2)當時,求直線的方程;

3)求證:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】日晷是中國古代用來測定時間的儀器,利用與晷面垂直的晷針投射到晷面的影子來測定時間.把地球看成一個球(球心記為O),地球上一點A的緯度是指OA與地球赤道所在平面所成角,點A處的水平面是指過點A且與OA垂直的平面.在點A處放置一個日晷,若晷面與赤道所在平面平行,點A處的緯度為北緯40°,則晷針與點A處的水平面所成角為(

A.20°B.40°

C.50°D.90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的導函數(shù).

(Ⅰ)當時,

i)求曲線在點處的切線方程;

ii)求函數(shù)的單調(diào)區(qū)間和極值;

(Ⅱ)當時,求證:對任意的,且,有

查看答案和解析>>

同步練習冊答案