設(shè)p:函數(shù)f(x)=
ax-1
的定義域為(-∞,0],q:關(guān)于x的不等式ax2-x+a>0的解集為R.若p∨q是真命題,p∧q是假命題,求a的取值范圍.
考點:函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用,不等式的解法及應(yīng)用,簡易邏輯
分析:通過已知條件知命題p和q中一真命題,一假命題,所以分p真q假和p假q真兩種情況去求a的取值范圍即可.
解答: 解:由已知條件知:命題p,和q中一個為真命題,一個為假命題;
∴①若p為真命題,q為假命題:
由命題p知0<a<1,要使q為假命題則:1-4a2≥0,或a≤0,解得a≤
1
2
;
0<a≤
1
2
;
②若p為假命題,q為真命題:
∵p為假命題;
由①知:a≤0,或a≥1     (1);
q為真命題,則
a>0
1-4a2<0
,解得a
1
2
       (2);
∴由(1)(2)知a≥1.
綜上得a的取值范圍是(0,
1
2
]∪[1,+∞).
點評:考查邏輯連接詞的表示符號,以及命題p∨q和p∧q真假情況的判斷,指數(shù)函數(shù)的單調(diào)性,一元二次不等式的解和判別式的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=3x-x3在區(qū)間(a2-10,a)上有最小值,實數(shù)a的取值范圍是( 。
A、(-1,3)
B、(-1,2)
C、(-1,3]
D、(-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的幾何體中,ABCD-A1B1C1D1是一個長方體,P-ABCD是一個四棱錐,其中AB=2,BC=3,AA1=2,點P∈平面CC1D1D且PD=PC=
2
,
(Ⅰ)在棱BB1(含端點)上能否找到一點M,使得PC∥平面ADM,并請說明理由;
(Ⅱ)求該幾何體的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)化簡
810+410
84+411

(2)計算:
(log25)2-4log25+4
+log2
1
5

(3)若函數(shù)y=log2(ax2+2x+1)的值域為R,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log2
x-1
x+2
,x∈[2,4],
(1)判斷函數(shù)f(x)的單調(diào)性,并證明;
(2)求函數(shù)f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且
3
bsinA=acosB.
(Ⅰ)求角B的大小;
(Ⅱ)若b=
3
,a=3,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠師徒二人各加工相同型號的零件2個,是否加工出精品均互不影響.已知師傅加工一個零件是精品的概率為
2
3
,徒弟加工一個零件是精品的概率為
1
2
,師徒二人各加工2個零件.
(1)求徒弟加工該零件的精品數(shù)多于師傅的概率.
(2)設(shè)師徒二人加工出的4個零件中精品個數(shù)為ξ,求ξ的分布列與期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax-1-lnx(a∈R).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)討論函數(shù)f(x)的零點個數(shù)問題
(3)當(dāng)x>y>e-1時,證明不等式exln(1+y)>eyln(1+x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四棱錐P-ABCD中,底面四邊形ABCD為矩形,AB=a,BC=2,PA⊥平面ABCD,現(xiàn)有以下五個數(shù)據(jù):①a=
1
2
,②a=1,③a=
2
,④a=
3
,⑤a=4.若對于BC邊上任意的點Q(不含點C),△PQD一定為銳角三角形,則a的取值所對應(yīng)的序號是
 

查看答案和解析>>

同步練習(xí)冊答案