(本題滿分12分)
已知關(guān)于的方程:.
(1)當(dāng)為何值時,方程C表示圓。
(2)若圓C與直線相交于M,N兩點,且|MN|=,求的值。
(3)在(2)條件下,是否存在直線,使得圓上有四點到直線的距離為,若存在,求出的范圍,若不存在,說明理由。

(1)時方程C表示圓。(2) ;(3)。

解析試題分析:(1)方程C可化為 ………………2分
顯然 時方程C表示圓!4分
(2)圓的方程化為    圓心 C(1,2),半徑 則圓心C(1,2)到直線l:x+2y-4=0的距離為   ………………6分
,有
得             …………8分
(3)設(shè)存在這樣的直線
圓心 C(1,2),半徑, 則圓心C(1,2)到直線的距離為

解得     ----------12分
考點:本題主要考查圓的方程及點到直線的距離公式。
點評:典型題,涉及直線與圓的位置關(guān)系問題,要關(guān)注弦長、半徑、圓心到直線的距離三者關(guān)系。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓C的半徑為2,圓心在x軸的正半軸上,直線與圓C相切.
(I)求圓C的方程;
(II)過點Q(0,-3)的直線與圓C交于不同的兩點A、B,當(dāng)時,求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知圓C:.
(1)若圓C的切線在x軸和y軸上的截距相等,求此切線的方程;
(2)從圓C外一點P()向該圓引一條切線,切點為M,O為坐標(biāo)原點,且有|PM|=|PO|,求使得|PM|取得最小值的點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題12分)
如圖,已知圓O的直徑AB=4,定直線L到圓心的距離為4,且直線L垂直直線AB。點P是圓O上異于A、B的任意一點,直線PA、PB分別交L與M、N點。

(Ⅰ)若∠PAB=30°,求以MN為直徑的圓方程;
(Ⅱ)當(dāng)點P變化時,求證:以MN為直徑的圓必過圓O內(nèi)的一定點。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題12分)如圖,設(shè)P是圓x2+y2=25上的動點,點D是P在x軸上的投影,M為PD上一點,且|MD|=|PD|.

(Ⅰ)當(dāng)P在圓上運動時,求點M的軌跡C的方程;
(Ⅱ)求過點(3,0)且斜率為的直線被曲線C所截線段的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知圓C的方程為x2+y2=4.
(1)求過點P(1,2)且與圓C相切的直線l的方程;
(2)直線l過點P(1,2),且與圓C交于A、B兩點,若|AB|=2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分16分)
已知圓,設(shè)點是直線上的兩點,它們的橫坐標(biāo)分別
,點的縱坐標(biāo)為且點在線段上,過點作圓的切線,切點為
(1)若,,求直線的方程;
(2)經(jīng)過三點的圓的圓心是
①將表示成的函數(shù),并寫出定義域.
②求線段長的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線,圓
(1)判斷直線和圓的位置關(guān)系;
(2)若直線和圓相交,求相交弦長最小時的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(14分)已知圓M過定點,圓心M在二次曲線上運動(1)若圓M與y軸相切,求圓M方程;(2) 已知圓M的圓心M在第一象限, 半徑為,動點是圓M外一點,過點與圓M相切的切線的長為3,求動點的軌跡方程;(3)若圓M與x軸交于A,B兩點,設(shè),求的取值范圍?

查看答案和解析>>

同步練習(xí)冊答案