(14分)已知圓M過定點,圓心M在二次曲線上運動(1)若圓M與y軸相切,求圓M方程;(2) 已知圓M的圓心M在第一象限, 半徑為,動點是圓M外一點,過點與圓M相切的切線的長為3,求動點的軌跡方程;(3)若圓M與x軸交于A,B兩點,設(shè),求的取值范圍?

解:(1)可知圓心M,半徑
則圓M方程為: ………………………………………………4分
(2)       設(shè)圓心
解得,所以圓M的方程為:
設(shè)QP于圓M相切,切點為P,則
所以動點Q的軌跡方程是 ……………………………………….9分
(3)設(shè)圓心M,可知圓M方程為:
取y=0得,不妨取,
    
,則,故所求的取值范圍為…………………..14分

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
已知關(guān)于的方程:.
(1)當(dāng)為何值時,方程C表示圓。
(2)若圓C與直線相交于M,N兩點,且|MN|=,求的值。
(3)在(2)條件下,是否存在直線,使得圓上有四點到直線的距離為,若存在,求出的范圍,若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
設(shè)橢圓的左、右焦點分別為,上頂點為,過點垂直的直線交軸負半軸于點,且
(1)求橢圓的離心率;
(2)若過、、三點的圓恰好與直線相切,求橢圓
方程;
(3)在(2)的條件下,過右焦點作斜率為的直線與橢圓交于、
點,在軸上是否存在點使得以為鄰邊的平行四邊形是菱形,
如果存在,求出的取值范圍,如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線C1為參數(shù)),曲線C2(t為參數(shù)).
(1)指出C1,C2各是什么曲線,并說明C1與C2公共點的個數(shù);
(2)若把C1,C2上各點的縱坐標(biāo)都拉伸為原來的兩倍,分別得到曲線.寫出的參數(shù)方程.公共點的個數(shù)和C公共點的個數(shù)是否相同?說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
過點作圓C的切線,切點為D,且QD=4
(1)求的值
(2)設(shè)P是圓C上位于第一象限內(nèi)的任意一點,過點P作圓C的切線l,且lx軸于點A,交軸于點B,設(shè),求的最小值(O為坐標(biāo)原點)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(14分)在平面直角坐標(biāo)系xOy中,已知圓C1:(x+3)2+(y-1)2=4和圓C2:(x
-4)2+(y-5)2=4.
(1)若點M∈⊙ C1,  點N∈⊙C2,求|MN|的取值范圍;
(2)若直線l過點A(4,0),且被圓C1截得的弦長為2 ,求直線l的方程;
(3)設(shè)P為平面上的點,滿足:存在過點P的無數(shù)多對互相垂直的直線l1和l2,它們分別與圓C1和圓C2相交,且直線l1被圓C1截得的弦長與直線l2被圓C2截得的弦長相等,試求所有滿足條件的點P的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(15分)已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一個圓.
(1)求實數(shù)m的取值范圍;
(2)求該圓半徑r的取值范圍;
(3)求圓心的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知橢圓C:的離心率為.雙曲線的漸近線與橢圓C有四個交點,以這四個交點為頂點的四邊形的面積為16,則橢圓C的方程為(   )

A. B. C. D. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

本小題滿分14分)
已知點,點是⊙上任意兩個不同的點,且滿足,設(shè)為弦的中點.

(1)求點的軌跡的方程;
(2)試探究在軌跡上是否存在這樣的點:它到直線的距離恰好等于到點的距離?若存在,求出這樣的點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案