已知函數(shù)的圖象經(jīng)過點(diǎn)
(1)求函數(shù)的解析式;
(2)設(shè),用函數(shù)單調(diào)性的定義證明:函數(shù)在區(qū)間上單調(diào)遞減;
(3)解不等式:

(1),(2)詳見解析,(3).

解析試題分析:(1)求函數(shù)的解析式,只需確定的值即可,由函數(shù)的圖象經(jīng)過點(diǎn),得,再由,(2)用函數(shù)單調(diào)性的定義證明單調(diào)性,一設(shè)上的任意兩個(gè)值,二作差,三因式分解確定符號(hào),(3)解不等式,一可代入解析式,轉(zhuǎn)化為解對(duì)數(shù)不等式,需注意不等號(hào)方向及真數(shù)大于零隱含條件,二利用函數(shù)單調(diào)性,去“”,注意定義域.
試題解析:(1),解得: ∵ 且;   3分
(2)設(shè)上的任意兩個(gè)值,且,則
        6分
,在區(qū)間上單調(diào)遞減.  8分
(3)方法(一):
,解得:,即函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a0/e/1g4e84.png" style="vertical-align:middle;" />;     10分
先研究函數(shù)上的單調(diào)性.
可運(yùn)用函數(shù)單調(diào)性的定義證明函數(shù)在區(qū)間上單調(diào)遞減,證明過程略.
或設(shè)、上的任意兩個(gè)值,且,
由(2)得: ,即
在區(qū)間上單調(diào)遞減.                    12分
再利用函數(shù)的單調(diào)性解不等式:
上為單調(diào)減函數(shù).,    13分
,解得:
.                         15分
方法(二):           10分
得:;由得:,                       13分
.                         15分
考點(diǎn):函數(shù)解析式,函數(shù)單調(diào)性定義,解不等式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)f(x)是定義在(-1,1)上的偶函數(shù),在(0,1)上是增函數(shù),若f(a-2)-f(4-a2)<0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=ex-ex(x∈R且e為自然對(duì)數(shù)的底數(shù)).
(1)判斷函數(shù)f(x)的奇偶性與單調(diào)性;
(2)是否存在實(shí)數(shù)t,使不等式f(xt)+f(x2t2)≥0對(duì)一切x都成立?若存在,求出t;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)求函數(shù)的定義域;
(2)判斷的奇偶性并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知冪函數(shù)為偶函數(shù).
(1)求的解析式;
(2)若函數(shù)在區(qū)間(2,3)上為單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,函數(shù).

(1)當(dāng)時(shí),畫出函數(shù)的大致圖像;
(2)當(dāng)時(shí),根據(jù)圖像寫出函數(shù)的單調(diào)減區(qū)間,并用定義證明你的結(jié)論;
(3)試討論關(guān)于x的方程解的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)上的奇函數(shù),且
(1)求的值
(2)若,,求的值
(3)若關(guān)于的不等式上恒成立,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)過點(diǎn).
(1)求實(shí)數(shù);
(2)將函數(shù)的圖像向下平移1個(gè)單位,再向右平移個(gè)單位后得到函數(shù)圖像,設(shè)函數(shù)關(guān)于軸對(duì)稱的函數(shù)為,試求的解析式;
(3)對(duì)于定義在上的函數(shù),若在其定義域內(nèi),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知.
(Ⅰ)當(dāng)時(shí),判斷的奇偶性,并說明理由;
(Ⅱ)當(dāng)時(shí),若,求的值;
(Ⅲ)若,且對(duì)任何不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案