已知函數(shù),設(shè)曲線在與軸交點處的切線為,的導函數(shù),滿足
(1)求的單調(diào)區(qū)間.
(2)設(shè),求函數(shù)上的最大值;
(1)(2)

試題分析:(1),
函數(shù)的圖像關(guān)于直線對稱,則
直線軸的交點為,,且
,且,解得,

,所以f(x)在R上單調(diào)遞增.                                ……4分
(2)
其圖像如圖所示.當時,
根據(jù)圖像得:

(。┊時,最大值為;
(ⅱ)當時,最大值為
(ⅲ)當時,最大值為.                                  ……10分
點評:用導數(shù)可以解決函數(shù)中求最值,單調(diào)性,極值等問題,要注意函數(shù)的定義域.分類討論時,要注意分類標準要不重不漏.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)(注意:仙中、一中、八中的學生三問全做,其他學校的學生只做前兩問)
已知函數(shù)
(Ⅰ)若,試確定函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,且對于任意,恒成立,試確定實數(shù)的取值范圍;
(Ⅲ)設(shè)函數(shù),求證:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).若,求的值;當時,求的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若函數(shù)處取極值,則            .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),為自然對數(shù)的底數(shù)).
(1)求函數(shù)的最小值;
(2)若≥0對任意的恒成立,求實數(shù)的值;
(3)在(2)的條件下,證明:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
已知函數(shù)處有極小值。
(1)求函數(shù)的解析式;
(2)若函數(shù)只有一個零點,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

本小題滿分12分)設(shè)M是由滿足下列條件的函數(shù)f (x)構(gòu)成的集合:①方程f (x)一x=0有實根;②函數(shù)的導數(shù)滿足0<<1.
(1)若函數(shù)f(x)為集合M中的任意一個元素,證明:方程f(x)一x=0只有一個實根;
(2)判斷函數(shù)是否是集合M中的元素,并說明理由;
(3)設(shè)函數(shù)f(x)為集合M中的任意一個元素,對于定義域中任意,
證明:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)試用含的代數(shù)式表示;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)令,設(shè)函數(shù)處取得極值,記點,證明:線段與曲線存在異于、的公共點;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
設(shè)函數(shù).
(Ⅰ)若曲線在點處與直線相切,求的值;
(Ⅱ)求函數(shù)的極值點與極值.

查看答案和解析>>

同步練習冊答案