已知函數(shù)
(1)求函數(shù)的最大值;
(2)若,求的取值范圍.
(3)證明:  +(n

(1)0;(2);(3)詳見(jiàn)解析.

解析試題分析:(1)先求,再利用判斷函數(shù)的單調(diào)性并求最值;
(2)思路一:由,分,三種情況研究函數(shù)的單調(diào)性,判斷的關(guān)系,確定的取值范圍.
思路二:由,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/04/f/1g7pi4.png" style="vertical-align:middle;" />,所以
,顯然,知為單調(diào)遞減函數(shù),
結(jié)合上恒成立,可知恒成立,轉(zhuǎn)化為,從而求得的取值范圍.
(3)在中令,得時(shí),.將代入上述不等式,再將得到的個(gè)不等式相加可得結(jié)論.
解證:(1),                       1分
當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),
所以函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減;       3分
.                    4分
(2)解法一:,          5分
當(dāng)時(shí),因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/7d/9/y3e412.png" style="vertical-align:middle;" />時(shí),所以時(shí),;         6分
當(dāng)時(shí),令
當(dāng)時(shí),,單調(diào)遞減,且,
內(nèi)存在唯一的零點(diǎn),使得對(duì)于,
也即.所以,當(dāng)時(shí);      8分
當(dāng)時(shí),時(shí),所以,當(dāng)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=ax-ln x,g(x)=,它們的定義域都是(0,e],其中e是自然對(duì)數(shù)的底e≈2.7,a∈R.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的最小值;
(2)當(dāng)a=1時(shí),求證:f(m)>g(n)+對(duì)一切m,n∈(0,e]恒成立;
(3)是否存在實(shí)數(shù)a,使得f(x)的最小值是3?如果存在,求出a的值;如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè),曲線在點(diǎn)處的切線與直線垂直.
(1)求的值;
(2)若對(duì)于任意的,恒成立,求的范圍;
(3)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),.
(1)求的單調(diào)區(qū)間;
(2)當(dāng)時(shí),若對(duì)于任意的,都有成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)為常數(shù).
(1)若函數(shù)處的切線與軸平行,求的值;
(2)當(dāng)時(shí),試比較的大小;
(3)若函數(shù)有兩個(gè)零點(diǎn)、,試證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),且
(1)求的值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)設(shè)函數(shù),若函數(shù)上單調(diào)遞增,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=alnx+bx2圖象上點(diǎn)P(1,f(1))處的切線方程為2x-y-3=0.
(1)求函數(shù)y=f(x)的解析式;
(2)函數(shù)g(x)=f(x)+m-ln4,若方程g(x)=0在[,2]上恰有兩解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=ln x-ax+1在x=2處的切線斜率為-.
(1)求實(shí)數(shù)a的值及函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)g(x)=,對(duì)?x1∈(0,+∞),?x2∈(-∞,0)使得f(x1)≤g(x2)成立,求正實(shí)數(shù)k的取值范圍;
(3)證明: ++…+<(n∈N*,n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)若函數(shù)的圖象切x軸于點(diǎn)(2,0),求a、b的值;
(2)設(shè)函數(shù)的圖象上任意一點(diǎn)的切線斜率為k,試求的充要條件;
(3)若函數(shù)的圖象上任意不同的兩點(diǎn)的連線的斜率小于l,求證

查看答案和解析>>

同步練習(xí)冊(cè)答案