考察某種藥物預防甲型H1N1流感的效果,進行動物試驗,調查了100個樣本,統(tǒng)計結果為:服用藥的共有60個樣本,服用藥但患病的仍有20個樣本,沒有服用藥且未患病的有20個樣本.
(Ⅰ)根據(jù)所給樣本數(shù)據(jù)完成下面2×2列聯(lián)表;
(Ⅱ)請問能有多大把握認為藥物有效?

 
不得流感
得流感
總計
服藥
 
 
 
不服藥
 
 
 
總計
 
 
 
(參考數(shù)據(jù):

(Ⅰ)填表:

 
不得流感
得流感
總計
服藥
40
20
60
不服藥
20
20
40
總計
60
40
100
(Ⅱ)大概90%認為藥物有效。

解析試題分析:(Ⅰ)填表:

 
不得流感
得流感
總計
服藥
40
20
60
不服藥
20
20
40
總計
60
40
100
……………6分  
(Ⅱ)假設檢驗問題:服藥與動物得流感沒有關系:
 
(),所以大概90%認為藥物有效。             ………10分
考點:列聯(lián)表,卡方公式的應用。
點評:簡單題,假設檢驗的“卡方公式”是:,不要求記憶,但要注意理解公式中字母的意義。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

某小組共有五位同學,他們的身高(單位:米)以及體重指標(單位:千克/米2)如下表所示:

 
A
B
C
D
E
身高
1.69
1.73
1.75
1.79
1.82
體重指標
19.2
25.1
18.5
23.3
20.9
(1)從該小組身高低于1.80的同學中任選2人,求選到的2人身高都在1.78以下的概率;
(2)從該小組同學中任選2人,求選到的2人的身高都在1.70以上且體重指標都在[18.5,23.9)中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某商場經(jīng)銷某商品,根據(jù)以往資料統(tǒng)計,顧客采用的付款期數(shù)的分布列為


1
2
3
4
5

0.4
0.2
0.2
0.1
0.1
商場經(jīng)銷一件該商品,采用1期付款,其利潤為200元;分2期或3期付款,其利潤為250元;分4期或5期付款,其利潤為300元.表示經(jīng)銷一件該商品的利潤.
(Ⅰ)求事件:“購買該商品的3位顧客中,至少有1位采用1期付款”的概率;
(Ⅱ)求的分布列及期望與方差D

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某商區(qū)停車場臨時停車按時段收費,收費標準為:每輛汽車一次停車不超過小時收費元,超過小時的部分每小時收費元(不足小時的部分按小時計算).現(xiàn)有甲、乙二人在該商區(qū)臨時停車,兩人停車都不超過小時.
(1)若甲停車小時以上且不超過小時的概率為,停車付費多于元的概率為,求甲停車付費恰為元的概率;
(2)若每人停車的時長在每個時段的可能性相同,求甲、乙二人停車付費之和為元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為了響應學校“學科文化節(jié)”活動,數(shù)學組舉辦了一場數(shù)學知識比賽,共分為甲、乙兩組.其中甲組得滿分的有1個女生和3個男生,乙組得滿分的有2個女生和4個男生.現(xiàn)從得滿分的學生中,每組各任選2個學生,作為數(shù)學組的活動代言人.
(1)求選出的4個學生中恰有1個女生的概率;(2)設為選出的4個學生中女生的人數(shù),求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

“肇實,正名芡實,因肇慶所產(chǎn)之芡實顆粒大、藥力強,故名!蹦晨蒲兴鶠檫M一步改良肇實,為此對肇實的兩個品種(分別稱為品種A和品種B)進行試驗.選取兩大片水塘,每大片水塘分成n小片水塘,在總共2n小片水塘中,隨機選n小片水塘種植品種A,另外n小片水塘種植B.
(1)假設n=4,在第一大片水塘中,種植品種A的小片水塘的數(shù)目記為,求的分布列和數(shù)學期望;
(2)試驗時每大片水塘分成8小片,即n=8,試驗結束后得到品種A和品種B在每個小片水塘上的每畝產(chǎn)量(單位:kg/畝)如下表:

 號碼
1
2
3
4
5
6
7
8
品種A
101
97
92
103
91
100
110
106
品種B
115
107
112
108
111
120
110
113
分別求品種A和品種B的每畝產(chǎn)量的樣本平均數(shù)和樣本方差;根據(jù)試驗結果,你認為應該種植哪一品種?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為普及高中生安全逃生知識與安全防護能力,某學校高一年級舉辦了高中生安全知識與安全逃生能力競賽. 該競賽分為預賽和決賽兩個階段,預賽為筆試,決賽為技能比賽.先將所有參賽選手參加筆試的成績(得分均為整數(shù),滿分為分)進行統(tǒng)計,制成如下頻率分布表.

分數(shù)(分數(shù)段)
頻數(shù)(人數(shù))
頻率
[60,70)


[70,80)


[80,90)


 [90,100)


合  計


(Ⅰ)求出上表中的的值;
(Ⅱ)按規(guī)定,預賽成績不低于分的選手參加決賽,參加決賽的選手按照抽簽方式?jīng)Q定出場順序.已知高一·二班有甲、乙兩名同學取得決賽資格.
①求決賽出場的順序中,甲不在第一位、乙不在最后一位的概率;
②記高一·二班在決賽中進入前三名的人數(shù)為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

甲、乙、丙三人獨立破譯同一份密碼,已知甲、乙、丙各自破譯出密碼的概率分別為、、,且他們是否破譯出密碼互不影響,若三人中只有甲破譯出密碼的概率為
(1)求的值.
(2)設甲、乙、丙三人中破譯出密碼的人數(shù)為,求的分布列和數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

兩枚質量均勻的正方體骰子,六個面上分別標有數(shù)字1、2、3、4、5、6,拋擲兩枚骰子.記兩枚骰子朝上的面上的數(shù)字分別為p,q,若把p,q分別作為點A的橫坐標和縱坐標,
(1)用列表法或樹狀圖表示出點A(p,q)所有可能出現(xiàn)的結果;
(2)求點A(p,q)在函數(shù)y=x-1的圖象上的概率.

查看答案和解析>>

同步練習冊答案