【題目】在直角坐標(biāo)系中,傾斜角為的直線的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程與曲線的直角坐標(biāo)方程;
(2)若直線與曲線交于,兩點(diǎn),且,求直線的傾斜角.
【答案】(1) ; (2) 或.
【解析】
(1)根據(jù)平方關(guān)系消參數(shù)得直線的普通方程,根據(jù)得曲線的直角坐標(biāo)方程(2)利用直線參數(shù)方程幾何意義求解.
(1)因?yàn)橹本的參數(shù)方程為(為參數(shù)),
當(dāng)時(shí),直線的直角坐標(biāo)方程為.
當(dāng)時(shí),直線的直角坐標(biāo)方程為.
因?yàn)?/span>,
因?yàn)?/span>,所以.
所以的直角坐標(biāo)方程為.
(2)解法1:曲線的直角坐標(biāo)方程為,
將直線的參數(shù)方程代入曲線的方程整理,得.
因?yàn)?/span>,可設(shè)該方程的兩個(gè)根為,,
則 ,.
所以 .
整理得,
故.
因?yàn)?/span>,所以或,
解得或
綜上所述,直線的傾斜角為或.
解法2:直線與圓交于,兩點(diǎn),且,
故圓心到直線的距離.
①當(dāng)時(shí),直線的直角坐標(biāo)方程為,符合題意.
②當(dāng)時(shí),直線的方程為.
所以,整理得.
解得.
綜上所述,直線的傾斜角為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:=1(a>b>0)的離心率為,其內(nèi)接正方形的面積為4.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)M為橢圓C的右頂點(diǎn),過(guò)點(diǎn)且斜率不為0的直線l與橢圓C相交于P,Q兩點(diǎn),記直線PM,QM的斜率分別為k1,k2,求證:k1k2為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市開(kāi)展年終大回饋,設(shè)計(jì)了兩種答題游戲方案:
方案一:顧客先回答一道多選題,從第二道開(kāi)始都回答單選題;
方案二:顧客全部選擇單選題進(jìn)行回答;
其中每道單選題答對(duì)得2分,每道多選題答對(duì)得3分,無(wú)論單選題還是多選題答錯(cuò)都得0分,每名參與的顧客至多答題3道.在答題過(guò)程中得到3分或3分以上立刻停止答題,并獲得超市回饋的贈(zèng)品.
為了調(diào)查顧客對(duì)方案的選擇情況,研究人員調(diào)查了參與游戲的500名顧客,所得結(jié)果如下表所示:
男性 | 女性 | |
選擇方案一 | 150 | 80 |
選擇方案二 | 150 | 120 |
(1)是否有95%的把握認(rèn)為方案的選擇與性別有關(guān)?
(2)小明回答每道單選題的正確率為0.8,多選題的正確率為0.75,.
①若小明選擇方案一,記小明的得分為,求的分布列及期望;
②如果你是小明,你覺(jué)得選擇哪種方案更有可能獲得贈(zèng)品,請(qǐng)通過(guò)計(jì)算說(shuō)明理由.
附:,
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題:關(guān)于的不等式無(wú)解;命題:指數(shù)函數(shù)是上的增函數(shù).
(1)若命題為真命題,求實(shí)數(shù)的取值范圍;
(2)若滿足為假命題且為真命題的實(shí)數(shù)取值范圍是集合,集合,且,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),證明:有且只有一個(gè)零點(diǎn);
(Ⅱ)求函數(shù)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】非空有限集合是由若干個(gè)正實(shí)數(shù)組成,集合的元素個(gè)數(shù).對(duì)于任意,數(shù)或中至少有一個(gè)屬于,稱集合是“好集”:否則,稱集合是“壞集”.
(1)判斷和是“好集”,還是“壞集”;
(2)題設(shè)的有限集合中,既有大于1的元素,又有小于1的元素,證明:集合是“壞集”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線的左、右焦點(diǎn)分別為,實(shí)軸長(zhǎng)為4,漸近線方程為,點(diǎn)N在圓上,則的最小值為( )
A. B. 5C. 6D. 7
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2014年7月18日15時(shí),超強(qiáng)臺(tái)風(fēng)“威馬遜”登陸海南。畵(jù)統(tǒng)計(jì),本次臺(tái)風(fēng)造成全省直接經(jīng)濟(jì)損失119.52億元.適逢暑假,小明調(diào)查住在自己小區(qū)的50戶居民由于臺(tái)風(fēng)造成的經(jīng)濟(jì)損失,作出如下頻率分布直方圖:
經(jīng)濟(jì)損失 4000元以下 | 經(jīng)濟(jì)損失 4000元以上 | 合計(jì) | |
捐款超過(guò)500元 | 30 | ||
捐款低于500元 | 6 | ||
合計(jì) |
(1)臺(tái)風(fēng)后區(qū)委會(huì)號(hào)召小區(qū)居民為臺(tái)風(fēng)重災(zāi)區(qū)捐款,小明調(diào)查的50戶居民捐款情況如上表,在表格空白處填寫正確數(shù)字,并說(shuō)明是否有以上的把握認(rèn)為捐款數(shù)額是否多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)?
(2)臺(tái)風(fēng)造成了小區(qū)多戶居民門窗損壞,若小區(qū)所有居民的門窗均由李師傅和張師傅兩人進(jìn)行維修,李師傅每天早上在7:00到8:00之間的任意時(shí)刻來(lái)到小區(qū),張師傅每天早上在7:30到8:30分之間的任意時(shí)刻來(lái)到小區(qū),求連續(xù)3天內(nèi),李師傅比張師傅早到小區(qū)的天數(shù)的數(shù)學(xué)期望.
附:臨界值表
參考公式: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com