【題目】已知命題:關于的不等式無解;命題:指數(shù)函數(shù)上的增函數(shù).

(1)若命題為真命題,求實數(shù)的取值范圍;

(2)若滿足為假命題且為真命題的實數(shù)取值范圍是集合,集合,且,求實數(shù)的取值范圍.

【答案】(1).(2)

【解析】

1)利用判別式求得為真時的取值范圍.根據(jù)指數(shù)函數(shù)的單調性求得為真時的取值范圍.由于為真命題,所以真,求兩個的范圍的交集,得到最終的取值范圍.(2)求得真時的取值范圍,即集合,根據(jù)列不等式組,解不等式組求得的取值范圍.

解:(1)由為真命題知,解得,所以的范圍是,

為真命題知,,,取交集得到.

綜上,的范圍是.

(2)由(1)可知,當為假命題時,;為真命題,則解得:

的取值范圍是,

,可得,

解得:

所以,的取值范圍是

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,過原點且斜率為1的直線交橢圓兩點,四邊形的周長與面積分別為8與 .

(Ⅰ)求橢圓的標準方程;

(Ⅱ)設直線交橢圓兩點,且,求證:到直線的距離為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在中, ,沿翻折到的位置,使平面平面.

(1)求證: 平面;

(2)若在線段上有一點滿足,且二面角的大小為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,是圓O的直徑,點C是圓O上異于A,B的點,直線平面E,F分別是的中點.

1)記平面與平面的交線為l,試判斷直線l與平面的位置關系,并加以證明;

2)設,求二面角大小的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中,錯誤的是( )

A. 若命題,,則命題

B. ”是“”的必要不充分條件

C. “若,則、中至少有一個不小于”的逆否命題是真命題

D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,過拋物線上的一點,作的兩條切線,與軸分別相交于,兩點.

(Ⅰ)若切線過拋物線的焦點,求直線斜率;

(Ⅱ)求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:關于x的方程x2﹣ax+4=0有實根;命題q:關于x的函數(shù)y=2x2+ax+4[3,+∞)上是增函數(shù),若“pq”是真命題,“pq”是假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,橫坐標、縱坐標均為整數(shù)的點稱為整點,如果函數(shù)的圖象恰好通過個整點,則稱函數(shù)階整點函數(shù).有下列函數(shù):

;

其中是一階整點函數(shù)的是( )

A. ①②③④ B. ①③④ C. ①④ D. ④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)在定義域內(nèi)單調遞增,求的取值范圍;

(2)若且關于的方程上恰有兩個不相等的實數(shù)根,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案