已知函數(shù)f(x)=sin(x+φ)(0≤φ≤π)是偶函數(shù).
(1)求φ的值;
(2)若將函數(shù)f(x)的圖象向左平移φ個單位后能與正弦曲線重合,求φ的最小正值.
考點:函數(shù)y=Asin(ωx+φ)的圖象變換,正弦函數(shù)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)根據(jù)正弦函數(shù)、余弦函數(shù)的圖象的對稱性以及φ的范圍,求得φ的值.
(2)由題意可得y=sin(x+2φ)的圖象能與正弦曲線重合,故2φ的最小值正好為函數(shù)的一個周期,由此求得φ的最小正值.
解答: 解:(1)∵函數(shù)f(x)=sin(x+φ)是偶函數(shù),∴φ=kπ+
π
2
,k∈z,
結(jié)合0≤φ≤π,可得φ=
π
2

(2)若將函數(shù)f(x)的圖象向左平移φ個單位后,所得圖象對應(yīng)的函數(shù)的解析式為y=sin(x+2φ),
所得圖象能與正弦曲線重合,則φ的最小正值滿足2φ=2π,∴φ=π.
點評:本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象的對稱性、周期性,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

下表給出一個“三角形數(shù)陣”(如圖),已知每一列的數(shù)成等差數(shù)列,從第三行起每一行的公比都相等,記第i行第j列的數(shù)為aij(i≥j,i,j∈N*).
(1)求a83;
(2)試寫出aij關(guān)于i,j的關(guān)系式;
(3)記第n行的和An,求數(shù)列{An}的前m項和Bm的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的前n項和為Sn,且滿足:a2+a4=22,S4=50.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{an}的前n項和Sn的最大值,并求Sn取最大值時n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}滿足a3=7,a5+a7=26,{an}的前n項和為Sn
(1)求數(shù)列{an}的通項公式an;
(2)求數(shù)列{an}的前20項和S20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知0<α<
π
2
,cosα=
3
5

(1)求tanα的值;
(2)求cos2α+sin(α+
π
2
)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n2•an(n≥2),而a1=1,通過計算a2,a3,a4,試猜想這個數(shù)列的通項公式an

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將3個不同的小球放入4個盒子中,則不同放法種數(shù)有
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(1,1),
b
=(-2,3),則(2
a
+
b
)•(
a
-
b
)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從雙曲線
x2
9
-
y2
16
=1的左焦點F引圓x2+y2=9的切線,切點為T,延長FT交雙曲線右支于P點,若M為線段FP的中點,O為坐標原點,則|MO|-|MT|=
 

查看答案和解析>>

同步練習冊答案