一個等差數(shù)列共有10項,其中奇數(shù)項的和為
25
2
,偶數(shù)項的和為15,則這個數(shù)列的第6項是( 。
A、3B、4C、5D、6
考點:等差數(shù)列的性質
專題:計算題,等差數(shù)列與等比數(shù)列
分析:利用奇數(shù)項的和為
25
2
,偶數(shù)項的和為15,求出首項a1和公差d的值,可得數(shù)列的通項,從而可求數(shù)列的第6項.
解答: 解:設公差為d,則
∵奇數(shù)項的和為
25
2
,偶數(shù)項的和為15,
∴5a1+20d=
25
2
,5(a1+d)+20d=15,
解得a1=
1
2
,d=
1
2
,∴an=
1
2
+
1
2
(n-1)=
n
2
,n∈N+,
∴這個數(shù)列的第6項是3,
故選:A.
點評:本題考查等差數(shù)列的定義,通項公式,前n項和公式的應用,求出首項a1和公差d的值,是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)sinωx+cosωx,如果存在實數(shù)x1,使得對任意的實數(shù)x,都有f(x1)≤f(x)≤f(x1+2014)成立,則ω的最小正值為( 。
A、
1
2014
B、
π
2014
C、
1
4028
D、
π
4028

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設復數(shù)z=
1-i
1+i
,則z的共軛復數(shù)
.
z
為( 。
A、1B、-1C、-iD、i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a=log23,b=ln2,c=5 -
1
2
,則a,b,c的大小關系是( 。
A、a>c>b
B、a>b>c
C、b>a>c
D、b>c>a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=kx+1,其中實數(shù)k隨機取自區(qū)間[-2,1],則對于?x∈[-1,1],都有f(x)≥0恒成立的概率為( 。
A、
1
2
B、
2
3
C、
3
5
D、
5
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sin(α-
π
6
)=
1
3
,則cos(
π
3
+α)的值為( 。
A、
2
2
3
B、-
2
2
3
C、
1
3
D、-
1
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,四邊形ABCD是正方形,CD=PD,∠ADP=90°,∠CDP=120°,E,F(xiàn),G分別為PB,BC,AP的中點.
(Ⅰ)求證:平面EFG∥平面PCD;
(Ⅱ)求二面角D-EF-B的平面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=1+ln
x
2-x
(0<x<2)
(1)是否存在點M(a,b),使得函數(shù)y=f(x)的圖象上任意一點P關于點M對稱的點Q也在函數(shù)y=f(x)的圖象上?若存在,求出點M的坐標;若不存在,請說明理由;
(2)定義Sn=
2n-1
i-1
f(
i
n
)=f(
1
n
)+f(
2
n
)+…+f(
2n-1
n
),其中n∈N*,求S2014
(3)在(2)的條件下,令Sn+1=2an,若不等式2 an•(anm>1對?n∈N*且n≥2恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c.滿足b(sinB-
2
sinC)=(a+c)(sinA-sinC),
AB
BC
≥0.
(1)求A的值;
(2)若a=
2
.求b-
2
c的取值范圍.

查看答案和解析>>

同步練習冊答案