下列求導運算正確的是( 。
A、(sinx)′=-cosx
B、(cosx)′=sinx
C、(
1
x
)′=-
1
x2
D、(2x)′=x•2x-1
考點:導數(shù)的運算
專題:導數(shù)的概念及應用
分析:根據(jù)常見函數(shù)的導數(shù)公式即可得到結論.
解答: 解:(sinx)′=cosx,故A錯誤.
(cosx)′=-sinx,故B錯誤.
1
x
)′=-
1
x2
,故C正確.
(2x)′=ln2•2x,故D錯誤,
故選:C.
點評:本題主要考查導數(shù)的計算,要求熟練掌握常見函數(shù)的導數(shù)公式.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對應的邊分別為a,b,c,已知asinA+bsinB=csinC,則角C的大小為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將1,2,3,4,5,6,7,8,9這9個正整數(shù)分別寫在三張卡片上,要求每一張卡片上的三個數(shù)中任意兩數(shù)之差都不在這張卡片上,現(xiàn)在第一張卡片上已經(jīng)寫有1和5,第二張卡片上寫有2,第三張卡片上寫有3,則第一張卡片上的另一個數(shù)字是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將1,2,3…,n2這n2個自然數(shù)任意分成n個組,取出每組數(shù)中的最大數(shù)組成集合M,記M中所有元素的和為Sn,則Sn的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圓的方程是
x=1+2cosθ
y=-2+2sinθ
(θ為參數(shù)),則這個圓的半徑是( 。
A、1
B、2
C、
1
2
D、
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,PA為⊙O的直徑,PC為⊙O的弦,過弧AC的中點H作PC的垂線交PC的延長線于點B.若HB=4,BC=2,則⊙O的直徑為(  )
A、10B、13C、15D、20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足條件:a1=
1
2
,an+1=
1+an
1-an
(n∈N+)
,則對n≤20的正整數(shù),an+an+1=
1
6
的概率為( 。
A、
1
20
B、
1
4
C、
1
5
D、0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若直線(2a+b)x+y-1=0(a>0,b>0)經(jīng)過橢圓
x2
4
+
y2
3
=1的右焦點,則
1
a
+
1
b
的最小值是(  )
A、
1
4
B、4
C、3+2
2
D、6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的可導函數(shù)f(x),當x∈(1,+∞)時,(x-1)f′(x)-f(x)>0恒成立,a=f(2),b=
1
2
f(3),c=(
2
+1)f(
2
),則a、b、c的大小關系為( 。
A、c<a<b
B、b<c<a
C、a<c<b
D、c<b<a

查看答案和解析>>

同步練習冊答案