觀察正弦曲線和余弦曲線,寫出滿足下列條件的區(qū)間:
(1)sinx>0;         
(2)sinx<0;          
(3)cosx>0;          
(4)cosx<0.
考點:三角函數(shù)線
專題:三角函數(shù)的圖像與性質(zhì)
分析:由正弦函數(shù)與余弦函數(shù)圖象即可寫出即可.
解答: 解:根據(jù)正弦函數(shù)與余弦函數(shù)圖象,則
(1)sinx>0?x∈(2kπ,π+2kπ),k∈Z;
(2)sinx<0?x∈(π+2kπ,2π+2kπ),k∈Z;
(3)cosx>0?x∈(-
π
2
+2kπ,
π
2
+2kπ),k∈Z;
(4)cosx<0?x∈(
π
2
+2kπ,
2
+2kπ),k∈Z.
點評:本題主要考查三角函數(shù)的圖象與性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中周期為π且為偶函數(shù)的是( 。
A、y=cos(2x-
π
2
B、y=sin(2x+
π
2
C、y=sin(x+
π
2
D、y=cos(x-
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知遞增等差數(shù)列{an}中的a2,a5是函數(shù)f(x)=x2-7x+10的兩個零點.?dāng)?shù)列{bn}滿足,點(bn,Sn)在直線y=-x+1上,其中Sn是數(shù)列{bn}的前n項和.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)令cn=an•bn,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i為虛數(shù)單位,則復(fù)數(shù)
1+2i
2-i
(  )
A、1B、iC、-1D、-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
log
1
2
(4-3x)
的定義域區(qū)間為( 。
A、[1,
4
3
]
B、[1,
4
3
)
C、(-∞,
4
3
)
D、(1,
4
3
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,且Sn=n2-
1
4
,n∈N*
(Ⅰ)證明:{a2n}是等差數(shù)列;
(Ⅱ)求數(shù)列{
1
Sn
}前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是正方體ABCD-A′B′C′D′中,異面直線A′D與CD′所成的角是(  )
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題p:在區(qū)間[1,+∞)上至少有一個x0,使得x03-x0-1>0,則¬p為(  )
A、?x∈[1,+∞),x3-x-1≤0
B、?x∈(-∞,1],x3-x-1≤0
C、?x0∈[1,+∞),x03-x0-1≤0
D、?x0∈(-∞,1],x03-x0-1≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2ex-1-
1
3
x3-x2(x∈R),
(1)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)求y=f(x)在[1,2]上的最小值;
(3)當(dāng)x∈(1,+∞)時,用數(shù)學(xué)歸納法證明:?n∈N*,ex-1
xn
n!

查看答案和解析>>

同步練習(xí)冊答案