(本小題滿分12分)
在如圖所示的四棱錐中,已知 PA⊥平面ABCD, , ,,
為的中點(diǎn).
(1)求證:MC∥平面PAD;
(2)求直線MC與平面PAC所成角的余弦值;
(3)求二面角的平面角的正切值.
(1)根據(jù)中位線性質(zhì),得到EM//AB,且EM= AB. 又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013052908372558567120/SYS201305290838479606905407_DA.files/image002.png">,且,所以EM//DC,且EM=DC ∴四邊形DCME為平行四邊形, 則MC∥DE,
(2)(3)
【解析】
試題分析:(1 )如圖,取PA的中點(diǎn)E,連接ME,DE,∵M為PB的中點(diǎn),
∴EM//AB,且EM= AB. 又∵,且,
∴EM//DC,且EM=DC ∴四邊形DCME為平行四邊形,
則MC∥DE,又平面PAD, 平面PAD
所以MC∥平面PAD
(2)取PC中點(diǎn)N,則MN∥BC,∵PA⊥平面ABCD,∴PA⊥BC ,
又,∴BC⊥平面PAC,
則MN⊥平面PAC所以,為直線MC與平面PAC所成角,
(3)取AB的中點(diǎn)H,連接CH,則由題意得
又PA⊥平面ABCD,所以,則平面PAB.
所以,過H作于G,連接CG,則平面CGH,所以
則為二面角的平面角.
則,
故二面角的平面角的正切值為
考點(diǎn):本試題考查了線面角和二面角的求解運(yùn)用。
點(diǎn)評:解決該試題的關(guān)鍵是能利用線面角和二面角的定義,準(zhǔn)確的表示角,借助于三角形的知識來求解得到,也可以建立空間直角坐標(biāo)系來運(yùn)用空間向量法來得到求解,屬于中檔題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動(dòng)經(jīng)濟(jì)增長,某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:
(I)他們選擇的項(xiàng)目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com