【題目】為改善人居環(huán)境,某區(qū)增加了對(duì)環(huán)境綜合治理的資金投入,已知今年治理環(huán)境(畝)與相應(yīng)的資金投入(萬(wàn)元)的四組對(duì)應(yīng)數(shù)據(jù)的散點(diǎn)圖如圖所示,用最小二乘法得到關(guān)于的線性回歸方程.

1)求的值,并預(yù)測(cè)今年治理環(huán)境10畝所需投入的資金是多少萬(wàn)元?

2)已知該區(qū)去年治理環(huán)境10畝所投入的資金為3.5萬(wàn)元,根據(jù)(1)的結(jié)論,請(qǐng)你對(duì)該區(qū)環(huán)境治理給出一條簡(jiǎn)短的評(píng)價(jià).

【答案】(1),預(yù)測(cè)今年治理環(huán)境10畝所需投入的資金是7.35萬(wàn)元.

(2)見(jiàn)解析.

【解析】

1)先求出,由過(guò)點(diǎn),可求出,再代入得出所需投入的資金;(2)結(jié)合(1)中盡量投入資金,對(duì)比去年資金做出合理評(píng)價(jià)即可.

解:(1)由散點(diǎn)圖中的數(shù)據(jù),可得,,

代入,得

從而回歸直線方程為

當(dāng)時(shí),(萬(wàn)元)

預(yù)測(cè)今年治理環(huán)境10畝所需投入的資金是7.35萬(wàn)元.

2)由(1)預(yù)測(cè)得今年治理環(huán)境10畝所需投入的資金是7.35萬(wàn)元,而去年該區(qū)治理環(huán)境10畝所投入的資金為3.5萬(wàn)元,今年增加了資金一倍以上,說(shuō)明該區(qū)下了大決心來(lái)改善人居環(huán)境,值得贊揚(yáng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知各項(xiàng)均為正數(shù)的等比數(shù)列的公比,且是方程的兩根,記的前n項(xiàng)和為.

1)若,依次成等差數(shù)列,求m的值;

2)設(shè),數(shù)列的前n項(xiàng)和為,若,求n的最小值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線:,拋物線圖象上的一動(dòng)點(diǎn)到直線與到軸距離之和的最小值為__________,到直線距離的最小值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩人玩猜數(shù)字游戲,先由甲心中想一個(gè)數(shù)字,記為,再由乙猜甲剛才所想的數(shù)字,把乙猜的數(shù)字記為,其中,若,就稱甲乙“心有靈屏”.現(xiàn)任意找兩人玩這個(gè)游戲,則他們“心有靈犀”的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為,是拋物線上的兩個(gè)動(dòng)點(diǎn),且,過(guò),兩點(diǎn)分別作拋物線的切線,設(shè)其交點(diǎn)為.

(1)若直線,軸分別交于點(diǎn),,且的面積為,求的值;

(2)記的面積為,求的最小值,并指出最小時(shí)對(duì)應(yīng)的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)若直線與曲線相交于兩點(diǎn),設(shè)點(diǎn),已知,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A,B,C,D是直角坐標(biāo)系中不同的四點(diǎn),若,,且,則下列說(shuō)法正確的是( ),

A.C可能是線段AB的中點(diǎn)

B.D可能是線段AB的中點(diǎn)

C.CD可能同時(shí)在線段AB

D.C、D不可能同時(shí)在線段AB的延長(zhǎng)線上

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的單調(diào)區(qū)間;

2)設(shè),若對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三棱錐P-ABC的三條側(cè)棱兩兩互相垂直,且AB=,BC=,AC=2,則此三棱錐外接球的表面積為______

查看答案和解析>>

同步練習(xí)冊(cè)答案