【題目】如圖,三棱錐中,平面平面,,且.
(1)求證:;
(2)若,求二面角的余弦值.
【答案】(1)證明見解析(2)
【解析】
(1)取的中點,連接.根據(jù),得 ,再由,根據(jù)線面垂直的判定定理得平面,則,再利用三線合一證明.
(2)由三條直線兩兩垂直,建立空間直角坐標系,分別求得平面和平面的一個法向量,再利用二面角的向量法公式求解.
(1)取的中點,連接.
,,
平面,
平面,
又OC平面,,
而是的中點,.
(2)平面平面,平面,
平面平面,
平面,
再由(1)可知三條直線兩兩垂直.
以所在直線分別為x軸、y軸、z軸建立空間直角坐標系.
由條件可得,.
則,
,,.
設平面的一個法向量為,
由可得
,
令,則.
同理可得平面的一個法向量為,
則.
由圖易知,二面角為銳角,
二面角的余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為F1,F2,過點F1的直線與C交于A,B兩點.△ABF2的周長為,且橢圓的離心率為.
(1)求橢圓C的標準方程:
(2)設點P為橢圓C的下頂點,直線PA,PB與y=2分別交于點M,N,當|MN|最小時,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】棉花的優(yōu)質(zhì)率是以其纖維長度來街量的,纖維越長的棉花晶質(zhì)越高.棉花的品質(zhì)分類標準為:纖維長度小于等于的為粗絨棉,纖維長度在的為細絨棉,纖維長度大于的為長絨棉,其中纖維長度在以上的棉花又名“軍海1號”.某采購商從新疆某一棉花基地抽測了根棉花的纖維長度,得到數(shù)據(jù)如下圖頻率分布表所示:
纖維長度 | ||||
根數(shù) |
(1)若將頻率作為概率, 根據(jù)以上數(shù)據(jù),能否認為該基地的這批棉花符合“長絨棉占全部棉花的以上”的要求?
(2)用樣本估計總體, 若這批榨花共有,基地提出了兩種銷售方案給采購商參考.方案一:不分等級賣出,每千克按元計算,方案二:對棉花先分等級再銷售,分級后不同等級的棉花售價如下表:
纖維長度 | ||||
售價 |
從來購商的角度,請你幫他決策一下該用哪個方案.
(3)用分層抽樣的方法從長絨棉中抽取6根棉花,再從此根棉花中抽取兩根進行檢驗.求抽到的兩根棉花只有一根是“軍海1號”的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
已知拋物線的焦點為,為上異于原點的任意一點,過點的直線交于另一點,交軸的正半軸于點,且有.當點的橫坐標為時,為正三角形.
(Ⅰ)求的方程;
(Ⅱ)若直線,且和有且只有一個公共點,
(ⅰ)證明直線過定點,并求出定點坐標;
(ⅱ)的面積是否存在最小值?若存在,請求出最小值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點是直線上的動點,為定點,點為的中點,動點滿足,且,設點的軌跡為曲線.
(1)求曲線的方程;
(2)過點的直線交曲線于,兩點,為曲線上異于,的任意一點,直線,分別交直線于,兩點.問是否為定值?若是,求的值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程]
在直角坐標系中,曲線的參數(shù)方程為(是參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程和曲線的直角坐標方程;
(2)設曲線經(jīng)過伸縮變換得到曲線,是曲線上任意一點,求點到曲線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】十九大指出中國的電動汽車革命早已展開,通過以新能源汽車替代汽/柴油車,中國正在大力實施一項將重塑全球汽車行業(yè)的計劃.2018年某企業(yè)計劃引進新能源汽車生產(chǎn)設備,通過市場分析,全年需投入固定成本2500萬元,每生產(chǎn)x(百輛),需另投入成本萬元,且.由市場調(diào)研知,每輛車售價5萬元,且全年內(nèi)生產(chǎn)的車輛當年能全部銷售完.
(1)求出2018年的利潤L(x)(萬元)關(guān)于年產(chǎn)量x(百輛)的函數(shù)關(guān)系式;(利潤=銷售額-成本)
(2)2018年產(chǎn)量為多少百輛時,企業(yè)所獲利潤最大?并求出最大利潤.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com