已知圓C經(jīng)過點A(-2,0),B(0,2),且圓心C在直線y=x上,又直線l:y=kx+1與圓C相交于P、Q兩點.
(1)求圓C的方程;
(2)過點(0,1)作直線l1與l垂直,且直線l1與圓C交于M、N兩點,求四邊形PMQN面積的最大值.
(1)x2+y2=4 (2)7
【解析】(1)設(shè)圓心C(a,a),半徑為r,因為圓C經(jīng)過點A(-2,0),B(0,2),
所以|AC|=|BC|=r,即==r,解得a=0,r=2.
故所求圓C的方程為x2+y2=4.
(2)設(shè)圓心C到直線l,l1的距離分別為d,d1,四邊形PMQN的面積為S.
因為直線l,l1都經(jīng)過點(0,1),且l1⊥l,根據(jù)勾股定理,有d12+d2=1.
又|PQ|=2×,|MN|=2×,
所以S=|PQ|·|MN|,
即S=×2××2×=
2=2≤
2=2=7,
當且僅當d1=d時,等號成立,所以四邊形PMQN面積的最大值為7.
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-8曲線與方程(解析版) 題型:填空題
設(shè)拋物線C1的方程為y=x2,它的焦點F關(guān)于原點的對稱點為E.若曲線C2上的點到E、F的距離之差的絕對值等于6,則曲線C2的標準方程為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-5橢圓(解析版) 題型:選擇題
過點M(-2,0)的直線l與橢圓x2+2y2=2交于P1,P2,線段P1P2的中點為P.設(shè)直線l的斜率為k1(k1≠0),直線OP(O為坐標原點)的斜率為k2,則k1k2等于( )
A.-2 B.2 C.- D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-4直線與圓、圓與圓的位置關(guān)系(解析版) 題型:解答題
已知圓C:x2+(y-1)2=5,直線l:mx-y+1-m=0,且直線l與圓C交于A、B兩點.
(1)若|AB|=,求直線l的傾斜角;
(2)若點P(1,1)滿足2=,求此時直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-4直線與圓、圓與圓的位置關(guān)系(解析版) 題型:選擇題
直線y=x+b與曲線x=有且僅有一個公共點,則b的取值范圍是( )
A.{b|b=±}
B.{b|-1<b≤1或b=-}
C.{b|-1≤b≤}
D.{b|-<b<1}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-3圓的方程(解析版) 題型:解答題
已知直線l:2x+y+2=0及圓C:x2+y2=2y.
(1)求垂直于直線l且與圓C相切的直線l′的方程;
(2)過直線l上的動點P作圓C的一條切線,設(shè)切點為T,求|PT|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-3圓的方程(解析版) 題型:選擇題
設(shè)A為圓(x-1)2+y2=1上的動點,PA是圓的切線,且|PA|=1,則P點的軌跡方程是( )
A.(x-1)2+y2=4 B.(x-1)2+y2=2
C.y2=2x D.y2=-2x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-2直線的交點坐標與距離公式(解析版) 題型:選擇題
平面直角坐標系中,直線y=2x+1關(guān)于點(1,1)對稱的直線方程是( )
A.y=2x-1 B.y=-2x+1
C.y=-2x+3 D.y=2x-3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-6空間向量及運算(解析版) 題型:選擇題
如圖,正方體ABCD-A1B1C1D1中,E,F(xiàn)分別在A1D,AC上,且A1E=A1D,AF=AC,則( )
A.EF至多與A1D,AC之一垂直
B.EF⊥A1D,EF⊥AC
C.EF與BD1相交
D.EF與BD1異面
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com