(2013•湖北)如圖,已知橢圓C1與C2的中心在坐標(biāo)原點(diǎn)O,長(zhǎng)軸均為MN且在x軸上,短軸長(zhǎng)分別為2m,2n(m>n),過原點(diǎn)且不與x軸重合的直線l與C1,C2的四個(gè)交點(diǎn)按縱坐標(biāo)從大到小依次為A,B,C,D,記,△BDM和△ABN的面積分別為S1和S2
(1)當(dāng)直線l與y軸重合時(shí),若S1=λS2,求λ的值;
(2)當(dāng)λ變化時(shí),是否存在與坐標(biāo)軸不重合的直線l,使得S1=λS2?并說明理由.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知長(zhǎng)方形的兩條對(duì)角線的交點(diǎn)為,且所在的直線方程分別為

(1)求所在的直線方程;  
(2)求出長(zhǎng)方形的外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)是橢圓上不關(guān)于坐標(biāo)軸對(duì)稱的兩個(gè)點(diǎn),直線軸于點(diǎn)(與點(diǎn)不重合),O為坐標(biāo)原點(diǎn).
(1)如果點(diǎn)是橢圓的右焦點(diǎn),線段的中點(diǎn)在y軸上,求直線AB的方程;
(2)設(shè)軸上一點(diǎn),且,直線與橢圓的另外一個(gè)交點(diǎn)為C,證明:點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線C上的動(dòng)點(diǎn)滿足到定點(diǎn)的距離與到定點(diǎn)距離之比為
(1)求曲線的方程;
(2)過點(diǎn)的直線與曲線交于兩點(diǎn),若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,已知圓C1:(x+3)2+(y-1)2=4和圓C2:(x-4)2+(y-5)2=4.

(1)若直線l過點(diǎn)A(4,0),且被圓C1截得的弦長(zhǎng)為2,求直線l的方程;
(2)設(shè)P為平面上的點(diǎn),滿足:存在過點(diǎn)P的無窮多對(duì)互相垂直的直線l1和l2,它們分別與圓C1和圓C2相交,且直線l1被圓C1截得的弦長(zhǎng)與直線l2被圓C2截得的弦長(zhǎng)相等,試求所有滿足條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓C:x2+y2+2x-4y+3=0.
(1)若圓C的切線在x軸和y軸上的截距相等,求此切線的方程;
(2)從圓C外一點(diǎn)P(x1,y1)向該圓引一條切線,切點(diǎn)為M,O為坐標(biāo)原點(diǎn),且有|PM|=|PO|,求使得|PM|取得最小值的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

兩條直線l1:(m+3)x+2y=5-3m,l2:4x+(5+m)y=16,分別求滿足下列條件的m的值.
(1) l1與l2相交;
(2) l1與l2平行;
(3) l1與l2重合;
(4) l1與l2垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

直線l經(jīng)過點(diǎn),且和圓C:相交,截得弦長(zhǎng)為,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

若直線x+ay+2=0和2x+3y+1=0互相垂直,則a=_______

查看答案和解析>>

同步練習(xí)冊(cè)答案