已知a>0,函數(shù)f(x)=x3-ax在[1,+∞)上是單調(diào)增函數(shù),則a的最大值是( )
A.0
B.1
C.2
D.3
【答案】分析:由題意a>0,函數(shù)f(x)=x3-ax,首先求出函數(shù)的導(dǎo)數(shù),然后根據(jù)導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系進(jìn)行判斷.
解答:解:由題意得f′(x)=3x2-a,
∵函數(shù)f(x)=x3-ax在[1,+∞)上是單調(diào)增函數(shù),
∴在[1,+∞)上,f′(x)≥0恒成立,
即a≤3x2在[1,+∞)上恒成立,
∴a≤3,
故選D.
點(diǎn)評(píng):此題主要考查函數(shù)導(dǎo)數(shù)與函數(shù)單調(diào)性之間的關(guān)系,掌握并會(huì)熟練運(yùn)用導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0,函數(shù)f(x)=ax2+bx+c,若x0滿足關(guān)于x的方程2ax+b=0,則下列選項(xiàng)的命題中為假命題的是( 。
A、?x∈R,f(x)≤f(x0B、?x∈R,f(x)≥f(x0C、?x∈R,f(x)≤f(x0D、?x∈R,f(x)≥f(x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0,函數(shù)f(x)=ln(2-x)+ax.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;(2)設(shè)曲線y=f(x)在點(diǎn)(1,f(1))處的切線為l,若l與圓(x+1)2+y2=1相切,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0,函數(shù)f(x)=ln(2-x)+ax.
(1)設(shè)曲線y=f(x)在點(diǎn)(1,f(1))處的切線為l,若l與圓(x+1)2+y2=1相切,求a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)求函數(shù)f(x)在[0,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0,函數(shù)f(x)=lnx-ax2,x>0.(f(x)的圖象連續(xù)不斷)
(Ⅰ)當(dāng)a=
1
8
時(shí)
①求f(x)的單調(diào)區(qū)間;
②證明:存在x0∈(2,+∞),使f(x0)=f(
3
2
);
(Ⅱ)若存在均屬于區(qū)間[1,3]的α,β,且β-α≥1,使f(α)=f(β),證明
ln3-ln2
5
≤a≤
ln2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0,函數(shù)f(x)=
|x-2a|
x+2a
在區(qū)間[1,4]上的最大值等于
1
2
,則a的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案