精英家教網 > 高中數學 > 題目詳情
已知a>0,函數f(x)=lnx-ax2,x>0.(f(x)的圖象連續(xù)不斷)
(Ⅰ)當a=
1
8

①求f(x)的單調區(qū)間;
②證明:存在x0∈(2,+∞),使f(x0)=f(
3
2
);
(Ⅱ)若存在均屬于區(qū)間[1,3]的α,β,且β-α≥1,使f(α)=f(β),證明
ln3-ln2
5
≤a≤
ln2
3
分析:(I)將a=
1
8
代入可得函數的解析式,
①求導數fˊ(x);在函數的定義域內解不等式fˊ(x)>0和fˊ(x)<0確定的單調區(qū)間
②由(I)知f(x)在(0,2)內單調遞增,在(2,+∞)內單調遞減.令g(x)=f(x)-f(
3
2
).利用函數f(x)在(0,2)內單調遞增,得到f(2)>f(
3
2
),即g(2)>0.最后取x′=
3
2
e>2,則g(x′)=
41-9e2
32
<0.從而得到結論;
(II)先由f(α)=f(β)及(I)的結論知α<
2a
2a
<β,從而f(x)在[α,β]上的最小值為f(a).再依1≤α≤2≤β≤3建立關于a的不等關系即可證得結論.
解答:解:(I)①當a=
1
8
時,f(x)=lnx-
1
8
x2.
∴f′(x)=
1
x
-
1
4
x=
1-
1
4
x2
x
,x∈(0,+∞),
令f′(x)=0,解得x=2.
當x變化時,f'(x),f(x)的變化情況如下表:

 所以,f(x)的單調遞增區(qū)間是(0,
2a
2a
),f(x)的單調遞減區(qū)間是(
2a
2a
,+∞).
證明:②由(I)知f(x)在(0,2)內單調遞增,在(2,+∞)內單調遞減.
令g(x)=f(x)-f(
3
2
).
由于f(x)在(0,2)內單調遞增,
故f(2)>f(
3
2
),即g(2)>0.
取x′=
3
2
e>2,則g(x′)=
41-9e2
32
<0.
所以存在x0∈(2,x'),使g(x0)=0,
即存在x0∈(2,+∞),使f(x0)=f(
3
2
).
(II)證明:由f(α)=f(β)及(I)的結論知α<
2a
2a
<β,
從而f(x)在[α,β]上的最小值為f(a).
又由β-α≥1,α,β∈[1,3],知1≤α≤2≤β≤3.
f(2)≥f(α)≥f(1)
f(2)≥f(β)≥f(3)

ln2-4a≥-a
ln2-4a≥ln3-9a

從而
ln3-ln2
5
≤a≤
ln2
3
點評:本小題主要考查導數的運算、利用導數研究函數的單調性、解不等式、函數的零點等基礎知識,考查運算能力和運用函數思想分析解決問題的能力及分類討論的思想方法.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知a>0,函數f(x)=ax2+bx+c,若x0滿足關于x的方程2ax+b=0,則下列選項的命題中為假命題的是( 。
A、?x∈R,f(x)≤f(x0B、?x∈R,f(x)≥f(x0C、?x∈R,f(x)≤f(x0D、?x∈R,f(x)≥f(x0

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a>0,函數f(x)=ln(2-x)+ax.
(1)求函數f(x)的單調區(qū)間;(2)設曲線y=f(x)在點(1,f(1))處的切線為l,若l與圓(x+1)2+y2=1相切,求a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a>0,函數f(x)=ln(2-x)+ax.
(1)設曲線y=f(x)在點(1,f(1))處的切線為l,若l與圓(x+1)2+y2=1相切,求a的值;
(2)求函數f(x)的單調區(qū)間;
(3)求函數f(x)在[0,1]上的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a>0,函數f(x)=
|x-2a|
x+2a
在區(qū)間[1,4]上的最大值等于
1
2
,則a的值為
 

查看答案和解析>>

同步練習冊答案