設(shè)f(x)滿足對任意的正整數(shù)m,n,都有f(m+n)=f(m)×f(n),且f(1)=2,則
f(2)
f(1)
+
f(4)
f(3)
+…+
f(2012)
f(2011)
=
 
考點:抽象函數(shù)及其應(yīng)用
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:可令m=n=1,或m=2,n=1或m=3,n=1…,從而得到
f(2)
f(1)
=
f(4)
f(3)
=…=
f(2012)
f(2011)
=f(1)=2,即可求得所求的和.
解答: 解:∵f(m+n)=f(m)×f(n),
∴f(2)=f(1)×f(1),
f(3)=f(2)f(1),
f(4)=f(3)f(1),
…,
f(n)=f(n-1)f(1),
f(2)
f(1)
=
f(4)
f(3)
=…=
f(2012)
f(2011)
=f(1)=2
f(2)
f(1)
+
f(4)
f(3)
+…+
f(2012)
f(2011)
=2×
2012
2
=2012.
故答案為:2012.
點評:本題考查抽象函數(shù)及應(yīng)用,考查解決抽象函數(shù)的常用方法:賦值法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A、B、C的對邊分別為a、b、c,已知acosB+bcosA=2(bcosC+ccosB).
(1)求
sinC
sinA
的值;
(2)若cosB=
1
4
,b=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知a>b>c,且a+b+c=0,用分析法求證:
b2-ac
3
a.
(2)f(x)=
1
3x+
3
,先分別求f(0)+f(1),f(-1)+f(2),f(-2)+f(3),然后歸納猜想一般性結(jié)論,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知條件p:x>a,條件q:x2+x-2>0,若p是q的充分不必要條件,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點為F(c,0),以原點為圓心,c為半徑的圓與雙曲線在第二象限的交點為A,若此圓在A點處的切線的斜率為
3
3
,則雙曲線C的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P(x,y)為圓(x-1)2+(y-1)2=4上任意一點,則x+y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=xlnx,若f′(x0)=3,則x0=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若對于任意實數(shù)x,有x5=a0+a1(x-2)+…+a5(x-2)5,則a1+a3+a5-a0=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從1,2,3,…,9這9個數(shù)中,取出2個數(shù),其和為奇數(shù)的取法有( 。
A、10種B、18種
C、20種D、36種

查看答案和解析>>

同步練習(xí)冊答案