【題目】如圖,已知位于軸左側(cè)的圓軸相切于點(diǎn)且被軸分成的兩段圓弧長之比為,直線與圓相交于,兩點(diǎn),且以為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn).

1)求圓的方程;

2)求直線的斜率的取值范圍.

【答案】(1)(2)

【解析】

1)依題意可設(shè)圓心,根據(jù)圓的性質(zhì)可以得出,進(jìn)而可以求出圓的標(biāo)準(zhǔn)方程;

2)解法1.

依題意知,只需求出點(diǎn)(或)在劣弧上運(yùn)動(dòng)時(shí)的直線(或)斜率,設(shè)其直線方程為,根據(jù)直線與圓的位置關(guān)系,結(jié)合點(diǎn)到直線的距離公式,可以求出的取值范圍,根據(jù)點(diǎn)在劣弧上,點(diǎn)在劣弧上,求出直線的斜率,進(jìn)而求出直線的斜率的取值范圍,在討論線的斜率為零時(shí),是否滿足,最后確定直線的斜率的取值范圍;

解法2.

當(dāng)時(shí),直線的方程為,根據(jù)直線與圓的位置關(guān)系結(jié)合點(diǎn)到直線距離公式,求出斜率的取值范圍,再以求出斜率的取值范圍,接著討論時(shí),是否滿足條件,最后確定斜率的取值范圍.

1)依題意可設(shè)圓心.設(shè)圓軸交于點(diǎn),因?yàn)閳A軸分成的兩段圓弧之比為,所以.于是,圓心.

所以圓的方程為.

2)解法1.

依題意知,只需求出點(diǎn)(或)在劣弧上運(yùn)動(dòng)時(shí)的直線

(或)斜率,設(shè)其直線方程為,

此時(shí)有,解得.

若點(diǎn)在劣弧上,則直線的斜率,于是;

若點(diǎn)在劣弧上,則直線的斜率,于是.

又當(dāng)時(shí),點(diǎn),也滿足條件綜上所述,所求的直線的斜率的取值范圍為

解法2.

當(dāng)時(shí),直線的方程為,由題意得,解得.

得,,解得.

當(dāng)時(shí),也滿足題意.

綜上所述,的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓:的左右焦點(diǎn)分別為,上頂點(diǎn)為.

(Ⅰ)若.

(i)求橢圓的離心率;

(ii)設(shè)直線與橢圓的另一個(gè)交點(diǎn)為,若的面積為,求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)由橢圓上不同三點(diǎn)構(gòu)成的三角形稱為橢圓的內(nèi)接三角形,當(dāng)時(shí),若以為直角頂點(diǎn)的橢圓的內(nèi)接等腰直角三角形恰有3個(gè),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著我國經(jīng)濟(jì)的高速發(fā)展,汽車的銷量也快速增加,每年因道路交通安全事故造成傷亡人數(shù)超過萬人,根據(jù)國家質(zhì)量監(jiān)督檢驗(yàn)檢疫局發(fā)布的《車輛駕駛?cè)藛T血液、呼氣酒精含量閥值與檢驗(yàn)》(-醉駕車的測(cè)試)的規(guī)定:飲酒駕車是指車輛駕駛?cè)藛T血液中的酒精含量大于或者等于,小于的駕駛行為;醉酒駕車是指車輛駕駛?cè)藛T血液中的酒精含量大于或者等于的駕駛行為,某市交通部門從年飲酒后駕駛機(jī)動(dòng)車輛發(fā)生交通事故的駕駛員中隨機(jī)抽查了人進(jìn)行統(tǒng)計(jì),得到如下數(shù)據(jù):

酒精含量

發(fā)生交通事故的人數(shù)

已知從這人中任意抽取兩人,兩人均是醉酒駕車的概率是.

1)求,的值;

2)實(shí)踐證明,駕駛?cè)藛T血液中的酒精含量與發(fā)生交通事故的人數(shù)具有線性相關(guān)性,試建立關(guān)于的線性回歸方程;

3)試預(yù)測(cè),駕駛?cè)藛T血液中的酒精含量為多少時(shí),發(fā)生交通事故的人數(shù)會(huì)超過取樣人數(shù)的?

參考數(shù)據(jù):,

回歸直線方程中系數(shù)計(jì)算公式,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為培養(yǎng)學(xué)生的閱讀習(xí)慣,某校開展了為期一年的“弘揚(yáng)傳統(tǒng)文化,閱讀經(jīng)典名著”活動(dòng). 活動(dòng)后,為了解閱讀情況,學(xué)校統(tǒng)計(jì)了甲、乙兩組各10名學(xué)生的閱讀量(單位:本),統(tǒng)計(jì)結(jié)果用莖葉圖記錄如下,乙組記錄中有一個(gè)數(shù)據(jù)模糊,無法確認(rèn),在圖中以a表示.

(Ⅰ)若甲組閱讀量的平均值大于乙組閱讀量的平均值,求圖中a的所有可能取值;

(Ⅱ)將甲、乙兩組中閱讀量超過15本的學(xué)生稱為“閱讀達(dá)人”. 設(shè),現(xiàn)從所有的“閱讀達(dá)人”里任取2人,求至少有1人來自甲組的概率;

(Ⅲ)記甲組閱讀量的方差為. 若在甲組中增加一個(gè)閱讀量為10的學(xué)生,并記新得到的甲組閱讀量的方差為,試比較,的大小.(結(jié)論不要求證明)

(注:,其中為數(shù)據(jù)的平均數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某綠色有機(jī)水果店中一款有機(jī)草莓味道鮮甜,店家每天以每斤元的價(jià)格從農(nóng)場(chǎng)購進(jìn)適量草莓,然后以每斤元的價(jià)格出售,如果當(dāng)天賣不完,剩下的草莓由果汁廠以每斤元的價(jià)格回收.

(1)若水果店一天購進(jìn)斤草莓,求當(dāng)天的利潤(單位:元)關(guān)于當(dāng)天需求量(單位:斤,)的函數(shù)解析式;

(2)水果店記錄了天草莓的日需求量(單位:斤),整理得下表:

日需求量

14

15

16

17

18

19

20

頻數(shù)

14

22

14

16

15

13

6

①假設(shè)水果店在這天內(nèi)每天購進(jìn)斤草莓,求這天的日利潤(單位:元)的平均數(shù);

②若水果店一天購進(jìn)斤草莓,以天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤不少于元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的是( 。

A.x3,則x22x30”的否命題是:x3,則x22x3≠0”

B.ABC中,ABsinAsinB的充要條件

C.pq為假命題,則pq一定為假命題

D.存在x0R,使得ex0≤0”的否定是:不存在x0R,使得e0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為R上的偶函數(shù),當(dāng)時(shí)當(dāng)時(shí),對(duì)恒成立,函數(shù)的一個(gè)周期內(nèi)的圖像與函數(shù)的圖像恰好有兩個(gè)公共點(diǎn),則 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司租賃甲、乙兩種設(shè)備生產(chǎn)、兩類產(chǎn)品,甲種設(shè)備每天能生產(chǎn)類產(chǎn)品件和類產(chǎn)品件,乙種設(shè)備每天能生產(chǎn)類產(chǎn)品件和類產(chǎn)品件.已知設(shè)備甲每天的租賃費(fèi)為元,設(shè)備乙每天的租賃費(fèi)為元,現(xiàn)該公司至少要生產(chǎn)類產(chǎn)品件,類產(chǎn)品件,求所需租賃費(fèi)最少為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列中,.從數(shù)列中選出項(xiàng)并按原順序組成的新數(shù)列記為,并稱為數(shù)列項(xiàng)子列.例如數(shù)列、、的一個(gè)項(xiàng)子列.

1)試寫出數(shù)列的一個(gè)項(xiàng)子列,并使其為等差數(shù)列;

2)如果為數(shù)列的一個(gè)項(xiàng)子列,且為等差數(shù)列,證明:的公差滿足;

3)如果為數(shù)列的一個(gè)項(xiàng)子列,且為等比數(shù)列,證明:

.

查看答案和解析>>

同步練習(xí)冊(cè)答案